استراتيجية الجامعة المجلد 4 تقنية الإفراج عن الفوز.
المجلد 7، رقم 3، أيار / مايو 2004. العلوم الرياضية والطبيعية. دراسة عن مخطط ثنائي القطب وتطبيق على المعادلة الحمل الحراري ثلاثي الأبعاد (إيتارو هاتايو ويوسوك.
مأساة العموم، التي كتبها غاريت هاردن (1968)
انظر أيضا لماذا ستيدي ستيتس هي حلقة لا يمكن حصرها: تطور تحت مبدأ الطاقة القصوى. مأساة المشاعات …
وقائع المؤتمر الأوروبي السابع على. - إصدار.
إيسو هو منصة النشر الرقمية التي تجعل من السهل نشر المجلات والكتالوجات والصحف والكتب، وأكثر من ذلك على الانترنت. بسهولة مشاركة المنشورات الخاصة بك والحصول على.
التعقيد - ويكيبيديا.
التعقيد يميز سلوك النظام أو النموذج الذي تتفاعل مكوناته بطرق متعددة واتباع القواعد المحلية، وهذا يعني أنه لا يوجد أعلى من المعقول.
التمساح | قطعة واحدة ويكي | فندوم مدعوم من ويكيا.
السير التمساح هو الرئيس السابق لجمعية الجريمة الغامضة الباروك الأشغال و.
إنفورماتيونويك نيوز يربط الأعمال ...
إنفورماتيونويك: الأخبار والتحليلات والبحوث لمهنيي تكنولوجيا الأعمال، بالإضافة إلى تبادل المعرفة الند للند. التفاعل مع مجتمعنا.
توكبوانت المجلد. 4 رقم 2 من قبل شبكة تصميم الخدمة - إصدار.
إيسو هو منصة النشر الرقمية التي تجعل من السهل نشر المجلات والكتالوجات والصحف والكتب، وأكثر من ذلك على الانترنت. بسهولة مشاركة المنشورات الخاصة بك والحصول على.
الولايات المتحدة: قناة إدارة الصراعات: كيفية إدارة من خلال ذلك والفوز.
قد يبدو بديهية لمناقشة الصراع قناة في اقتصاد لينة. عندما يفكر معظم عملائنا في إدارة الصراع، يفترضون أنهم سيحتاجون إلى ضوابط على القناة و / أو تخفيض في شركاء القنوات كحل. ومن يستطيع أن يفعل ذلك في الاقتصاد الناعم؟
في الواقع، إدارة الصراع أمر حتمي في سوق لينة. فالقنوات أكثر حساسية للصراع بسبب التأثير الملحوظ على النتيجة النهائية. لذلك، فهي سريعة للعمل على إدارة الصراع و [مدش]؛ وهو ما يعني عادة أقل التركيز على العلامة التجارية مذنب. عدد قليل من الشركات المصنعة يمكن أن تحمل الخسارة في تغطية السوق الفعالة التي يمكن أن يؤدي هذا القرار قناة من جانب واحد في. وبالتالي، فإن الحاجة إلى الشركة المصنعة لمعالجة استباقية لهذه المسألة.
قناة الصراع في موجز.
تعد أنظمة القنوات المتعددة طريقة حياة للمصنعين اليوم. سواء كنت تدير مزيجا من القنوات المباشرة وغير المباشرة أو مجموعة من الدعم العالي للموردين منخفضة الدعم، والواقع هو أن الصراع قناة ستكون قضية مستمرة في السوق الخاص بك. وبما أن عدد مواقع الإنترنت (بما في ذلك مواقع الويب الخاصة بك) التي تقدم منتجك للبيع تتكاثر، يصبح هذا الهيكل متعدد القنوات أكثر تعقيدا وقد يكون احتمال تضارب القناة أكثر انتشارا.
وهناك كمية محدودة من الصراع قناة صحية. وهو يشير إلى أن لديك تغطية كافية في السوق. ومع ذلك، فعند فقدان التوازن بين التغطية والنزاع، يمكن أن يؤدي تعارض القناة المدمرة إلى تقويض استراتيجية قناتك وموقعها في السوق وربحية خط إنتاجك.
يمكن أن يظهر الصراع في السوق بطرق متنوعة. وهناك نقطة من الارتباك لكثير من الشركات المصنعة هي ما إذا كانت المشاكل هي حقا أعراض الصراع قناة مدمرة أو غيرها من قضايا التسويق أو قناة استراتيجية. عندما تواجه مؤشرات محتملة للنزاع المدمر، يجب عليك مراجعة وضعك في السوق لتحديد السبب الحقيقي ثم التصرف بسرعة لمعالجة ذلك.
تتم إدارة تضارب القناة بواسطة مجموعة من الاقتصادات والضوابط. وتعوض الحلول الاقتصادية القنوات بإنصاف عن المهام المنجزة وتساعد على توجيه القنوات بعيدا عن الإجراءات التي تخلق صراعا مدمرا. ووضعت الضوابط هيكل حول استراتيجية القناة للحد من احتمال نشوب صراع مدمر لا مبرر له.
ما هو "تضارب القناة"؟
يمكن تعريف تضارب القناة على أنه أي سيناريو تتنافس فيه قناتان مختلفتان على نفس عملية البيع مع العلامة التجارية نفسها. يمكن أن يأخذ الصراع شكل قوة مبيعات مباشرة تتنافس مع موزع مستقل، نوعين مختلفين من الموزعين المتنافسين، واثنان مثل الموزعين المتنافسة على نفس البيع، أو كل ما سبق.
بعض الحقائق حول تحقيق التوازن المناسب بين التغطية والصراع:
عدم وجود أي تضارب في القناة في استراتيجية التسويق عادة ما يشير إلى ثغرات في تغطية السوق لا يمكن القضاء على النزاع. يجب أن يكون الهدف من إدارة التسويق هو تحسين تغطية السوق وإدارة مستوى صحي من الصراع على القناة بحيث لا تصبح مدمرة تآكل حصتها في السوق وانخفاض أسعار الشوارع هي دليل على أن الصراع قناة أصبحت مدمرة. القنوات تستجيب للمنافسة المفرطة عن طريق إلغاء التركيز على العلامة التجارية أو عن طريق التخلي عن الكثير من أجل الحفاظ على حساب كل مصنع سوف تواجه على الأرجح الصراع قناة مدمرة في مرحلة ما. ومع تطور الأسواق وتنضجها، سيطلب من العديد من المصنعين إضافة قنوات جديدة منخفضة التكلفة لتغطية جميع قطاعات السوق الرئيسية. في كثير من الأحيان، ينشأ الصراع المدمر لأن التغيرات في الشركة المصنعة تذهب إلى استراتيجية السوق تتخلف عن تغيرات السوق المرتبطة بتطور السوق.
إدراك الصراع المدمر للقناة.
قناة "ضجيج" بشأن النزاع موجودة دائما. (في الواقع، فإن عدم وجود ضوضاء القناة غالبا ما يكون مؤشرا مبكرا لثغرات التغطية في إستراتيجية قناة الشركة المصنعة.) ومع ذلك، فهذا لا يعني أن شركتك تعاني من تعارض قناة مدمرة فقط بسبب اختلاف الفصائل الداخلية أو أعضاء القناة يشكون من عدم التزام الشركة المصنعة أو غير مريح مع المنافسة على بعض المبيعات.
زيادة مستويات الضجيج أو دليل على انخفاض دعم القناة لخط المنتج الخاص بك سيكون المؤشرات التي تولي اهتماما ل. غير أن هذه دعوة صعبة، لأن الصراع المدمر يميل إلى الزحف إلى نظام قنوات مع مرور الوقت.
المؤشرات الخارجية للنزاعات المدمرة للقنوات.
تحدث هذه الحالات عندما يتنافس العديد من أعضاء شبكة القناة على نفس عملية البيع في الحساب نفسه. وينبغي توقع عدد محدود من الحروب الحدودية وهو في الواقع مؤشر على أن لديك تغطية جيدة في السوق. فالسوق الناعمة يهيئ البيئة لزيادة الحروب الحدودية حيث أن القنوات تحصل على المزيد من العدوانية لتحقيق الإيرادات. وبوجه عام، ستبدأ القنوات في التفاعل مع تعارض القناة عندما تتجاوز نسبة حروب الحدود ما بين 10٪ و 20٪ من إجمالي نشاط القناة مع منتجات الشركة المصنعة.
وهناك عنصر ضروري من استراتيجية جيدة لإدارة القناة هو السيطرة على درجة من العاطفة من القناة. ومع ذلك، كما يبني العاطفة، وسوف تبدأ القنوات للرد عن طريق الحد من دعم خط الانتاج أو عن طريق تحويل هذا الخط كلما كان ذلك ممكنا. وغالبا ما تتسبب العاطفة في إزالة القناة من العلامة التجارية حتى عندما لا تكون في صالح القناة. لقد تبين لنا أن القنوات غالبا ما تتمتع بسلطة تقديرية للتحكم في اختيار العلامة التجارية في ما يصل إلى 40٪ من المبيعات & مداش؛ فهي عادة لا تختار ممارسة هذا التقدير.
يمكن أن يؤدي النزاع إلى إضعاف رضا العملاء لسببين:
سيبدأ العملاء في تجربة تكاليف الشراء الزائدة عندما يجبرون على التعامل مع قنوات متعددة تقدم أساسا نفس الحلول في حالات البيع تركز القنوات المتنافسة على طرق سهلة للفوز بعملية البيع في حالة النزاع (مثل انخفاض السعر) والبدء في تجاهل العملاء الأقل وضوحا شراء المتطلبات.
قناة حلول الصراع.
يعد تعارض القناة جزءا لا يتجزأ من إستراتيجية قناتك، لذا يجب عليك فحص وضع السوق واستراتيجية القناة قبل محاولة إدارتها. إن إلقاء نظرة فاحصة على المشكلة غالبا ما يكشف أن قضية النزاع المتصورة للقناة تخفي قضية استراتيجية قناة أكبر. لذا، قبل تنفيذ حلول لمعالجة تعارض القناة، يتم تشجيع الشركة المصنعة على فحص جميع عناصر إستراتيجيتها العامة للقناة، بما في ذلك التسعير وتجزئة المستخدمين النهائيين وبرامج دعم القنوات وسياسات الشركة وما إلى ذلك. هل أنشأت حالة تعارض من خلال التصميم أو تنفيذ هذه المكونات الأخرى لاستراتيجية القناة؟
تدار النزاعات التدميرية للقناة من خلال الاقتصاد والضوابط الهيكلية. الاقتصاد يحفز القنوات لتجنب الصراع. وتضع الضوابط الهيكلية القواعد الأساسية التي يدار فيها الصراع. مع كل تكتيك، والاتصالات قبل نشوء الصراع أمر بالغ الأهمية.
والحل الاقتصادي الصحيح يمليه نوع النزاع الذي يواجهه، وموقع السوق وقناة القناة، والأهداف الاستراتيجية للشركة. وتشمل النهج الاقتصادية؛
التعويض المزدوج & مداش؛ يتم تطبيقها عند حدوث تضارب بين القنوات المباشرة وغير المباشرة. والهدف من ذلك هو نقل القناة غير المباشرة من موقع الخصم المحتمل لقوة البيع المباشر إلى واحد من "شريك" لقوة المبيعات المباشرة النشاط القائم على تعويض أو خصم و [مدش]؛ تستخدم لإدارة الصراع عبر القنوات أو الصراع بين قنوات مختلفة التكلفة والهياكل والقدرات. يتم تطبيق الخصومات على أساس النشاط عن طريق دفع قناة خصم معين إذا كان يؤدي مهمة قابلة للقياس أو وظيفة. هذه الخصومات تسمح للقناة "عالية التكلفة" للتنافس ضد قنوات "منخفضة التكلفة" لأولئك العملاء الذين يقدرون الدعم العالي التكاليف المشتركة و [مدش]؛ والفرق الرئيسي بين هذا المفهوم والخصومات الوظيفية هو أن الخصومات الوظيفية تعويض القناة للمهام الإضافية عبر خصم على المنتجات المباعة، في حين أن التكاليف المشتركة تدفع مباشرة للمهمة التعويض عن حصة السوق و [مدش]؛ عادة ما تطبق على مباشرة مقابل النزاع غير المباشر، يتم تعويض مندوب المبيعات المباشرة على أساس إجمالي حصة السوق في الإقليم. وتستند أهداف مندوب المبيعات على حجم مباشر وغير مباشر، وبالتالي تحفيز مندوب مباشر إلى "شريك" مع قنوات غير مباشرة لتحقيق أقصى قدر من حجم الأراضي.
الضوابط الهيكلية هي فقط فعالة مثل إنفاذها. لا توجد قيمة إلا إذا كنت على استعداد لتوضيح واضح الضوابط في بداية اتفاقية القناة وإنفاذ العقوبات المذكورة لجميع أعضاء القناة. وعادة ما تطبق الضوابط الهيكلية على:
الحسابات & مداش؛ يمكنك تحديد حسابات "المسماة" أو "المنزل" حيث يمكن أن تتوقع القنوات غير المباشرة التنافس مع قنواتك المباشرة. وعادة ما يتم تحديد الحسابات المسماة استنادا إلى إمكانات مصادر المستخدمين النهائيين وقنوات القناة لتلبية متطلبات الشراء للمستخدم النهائي والحجم والقيمة الإستراتيجية المنتجات & مداش؛ ويمكن للقنوات التأهل للحصول على حق الامتياز من خلال خط الانتاج / الفئة عبر عرض شركتك. يعتمد تأهيل المنتج عادة على احتياجات دعم المنتج النهائي للمستخدم أو قدرات دعم القناة أو "ملاءمة" أو تحديد موضع فئة المنتج في النشاط التجاري العام للقناة والاعتبارات الاستراتيجية الجغرافيا و [مدش]؛ كمصنع، يمكنك تحديد تلك المناطق الجغرافية / أنواع الحسابات التي ستقدم فيها دعم المبيعات إلى القناة. وتعرف هذه المناطق الجغرافية عادة بمنح القناة مجالا أساسيا للمسؤولية.
المسوق الناجح يجمع بين عناصر الحلول الاقتصادية والتحكم ذات الصلة التي تعالج أفضل التحديات الصراع و [مدش]؛ تأطير لهم في فهم موقف السوق، موقف القناة، والأهداف الاستراتيجية.
هل تعارض القناة مشكلة استراتيجية في عملك اليوم؟
خصص بعض الوقت للنظر في الأسئلة التالية:
هل رأيت مؤخرا تحركك في السوق من خلال نقطة "انتقال" (على سبيل المثال، من المقدمة إلى النمو، من النمو حتى النضج)؟ هل أجريت أي تغييرات حديثة على إستراتيجية قناتك (على سبيل المثال، إضافة أعضاء القناة، وإضافة أنواع جديدة من القنوات)؟ هل لديك طلبات من قوة البيع المباشر أو قنوات لأسعار خاصة زيادة كبيرة؟ هل هبطت الهوامش الإجمالية بشكل ملحوظ في أي شريحة من شرائح العملاء أو القنوات؟ هل رأيت انخفاضا في إيرادات الدولار لكل مندوب مبيعات مباشر و / أو إيرادات بالدولار لكل موقع قناة؟ هل واجهت خسارة كبيرة في حصة السوق أو انخفاض في رضا العملاء في أي قطاعات العملاء؟ هل واجهت انخفاضا في عدد القنوات كنتيجة لقنوات تسقط خطك؟
إذا أجبت بنعم على سؤالين أو أقل، فإن النزاع ليس قضية استراتيجية بالنسبة لك اليوم. إذا أجبت بنعم على ثلاثة أو أربعة أسئلة، فقد يؤثر النزاع على نشاطك التجاري. أغتنم هذه الفرصة ل "تدقيق" موقف السوق الخاص بك وسن استراتيجيات لإدارة الصراع المدمر. إذا أجبت بنعم على خمسة أسئلة أو أكثر، فقد يؤدي النزاع إلى تقويض إستراتيجية قناتك ويجب إدارتها الآن.
يهدف محتوى هذه المقالة إلى تقديم دليل عام للموضوع. ينصح بأخذ استشارة الاخصائيين في مثل ظروفك.
لطباعة هذه المقالة، كل ما تحتاجه هو أن تكون مسجلة على موندق.
انقر لتسجيل الدخول كمستخدم موجود أو تسجيل حتى تتمكن من طباعة هذه المقالة.
فحم الكوك يحل محل "السعادة المفتوحة" مع "تذوق الشعور" في التحول الاستراتيجي الرئيسي.
غلوبال تمو ماركوس دي كينتو أوشرز إن نيو إيرا، يشرح لماذا حملة طويلة المدى قد انتهت.
بواسطة E. J. شولتز. نشرت في 19 يناير، 2018.
منذ إطلاق "السعادة المفتوحة" قبل سبع سنوات، استخدمت كوكا كولا الحملة النبيلة المرتكزة على المثل العليا لتعزيز كل شيء من مكافحة التسلط إلى التعايش السلمي بين الهنود والباكستانيين. ولكن لمدير التسويق العالمي الجديد ماركوس دي كينتو، أصبحت الحملة مجرد القليل جدا من الوعظ. وفشلت في مطرقة المنزل ملذات أكثر بساطة، مثل التمتع فحم الكوك الباردة الجليد في يوم حار.
حتى في الخطوة الكبيرة الأولى تحت ساعته، وفحم الكوك يغلق "السعادة المفتوحة". وستقوم حملة عالمية جديدة تسمى "تاست ذي فيلينغ" بوضع المنتج في صميم كل إعلان، حيث تسعى شركة فحم الكوك إلى كسب المزيد من المشربين في فئة الصودا المتعثرة. وفي تحول استراتيجي كبير، سوف تعتمد فحم الكوك نهج "العلامة التجارية الواحدة" الذي سيوحد أصناف متعددة مثل دايت كوك و كوك زيرو في حملة واحدة، بدلا من تشغيل مواقع متباينة.
ومن المتوقع أن يعلن المديرون التنفيذيون لشركة كوكا كولا الحملة اليوم في باريس مع بدء عرض الإعلانات في أكثر من 200 دولة حيث يتم بيع فحم الكوك.
ماركوس دي كينتو.
وقبل مغادرته إلى أوروبا، قام السيد دي كينتو بمعاينة استراتيجية "العصر" في مقابلة أجريت معه في مقر شركة "أتلانتا" في فحم الكوك الأسبوع الماضي. وقد وصفت أول مقابلة له مع وسائل الإعلام الأمريكية منذ أن شغلت منصب مدير التسويق قبل عام، وذلك بعد 14 عاما من قيادة وحدة الأعمال التجارية في شركة "كوكا كولا"، والتي تغطي إسبانيا والبرتغال.
يبدأ عصر دي كينتو.
في حين أنه كان يعمل في الخلفية لعدة أشهر، إطلاق حملة اليوم يمثل بداية دي كوينتو عصر التسويق في فحم الكوك. ويأتي ذلك في أعقاب رحيل ويندي كلارك، المدير التنفيذي للتسويق في أمريكا الشمالية، الذي كان له دور عالمي خلال فترة ولايته. جنبا إلى جنب مع منظمة السياحة العالمية العالمية السابقة جو تريبودي، أشرفت السيدة كلارك "السعادة المفتوحة"، الذي لاول مرة في عام 2009 وكثيرا ما تناولت قضايا اجتماعية كبيرة، مثل العام الماضي "جعلها سعيد" سوبر بول الإعلان الذي ركز على البلطجة على الانترنت.
في المقابلة، تحدث السيد دي كوينتو بحماس عن تناول الكوك في اتجاه جديد أكثر تواضعا. الإعلانات سوف تستخدم هذا النوع من القصص العاطفية منذ فترة طويلة المرتبطة بفحم الكوك. لكنهم سيصورون اللحظات اليومية، مثل التاريخ الأول، ويضعون زجاجات الكوك الأمامية والوسطى. وقال ان الحملة الجديدة "تعود الى القيم الاساسية لكوكا كولا". "لقد كنا نتحدث فقط عن العلامة التجارية، ولكن الحديث قليلا جدا عن المنتج."
واضاف ان الكوك كان "بدأ يتحدث بطريقة الوعظ الى الناس، وكانت كوكا كولا دائما متعة بسيطة". "إن برنس كوكا كولا يقيم في هذا التواضع، بساطته". لكن "أكثر ما حاولنا ... أن نتبشير للشعب، الأصغر الذي صنعناه".
'طعم الشعور' إعلان الائتمان: كوكا كولا.
وقد انضم السيد دي كينتو في المقابلة من قبل إيكسيك آخر الذي سيكون مفتاح الاتجاه الجديد لكوكا - رودولفو إشيفيريا، وهو موظف الكوك منذ فترة طويلة الذي كان في يناير الماضي عين نائب الرئيس العالمي للإبداع والاتصالات والرقمية. وقبل ذلك الترويج، عمل السيد إشيفيريا في منصب نائب الرئيس للتسويق في أمريكا اللاتينية. وقال السيد إشيفيريا إن الكوك لم يعد يريد أن يكون حول "تثبيت السعادة" مع الأفكار "رفيعة المستوى". وبدلا من ذلك، فإن الحملة الجديدة "تهتم كثيرا بالعيش في الحميمية والبساطة ... لحظات". وأشار إلى سطر كلاسيكي - "لديك فحم الكوك وابتسامة" - كرمز للاتجاه العلامة التجارية الجديدة.
وضع علامة تجارية هائلة مثل فحم الكوك على دورة تسويقية جديدة هي مهمة ضخمة ويأتي معارك العلامة التجارية فئة الرياح المعاكسة، وعلى الأخص انخفاض استهلاك الصودا وسط المخاوف الصحية المتزايدة. في حين أن فحم الكوك لا يزال أعلى علامة تجارية للصودا في الولايات المتحدة، إلا أنه حقق نموا بنسبة 0.1٪ فقط في عام 2018، في حين انخفض حجم دايت كوك بنسبة 6.6٪، وفقا لأحدث بيانات السنة الكاملة المتاحة من دايجست المشروبات. وبالنسبة للربع الثالث من عام 2018، سجلت الشركة نموا عالميا بنسبة 1٪ في العلامة التجارية لشركة كوكا كولا، بما في ذلك نمو بنسبة 1٪ للعلامة التجارية لفحم الكوك، ونمو بنسبة 8٪ بالنسبة لشركة كوك زيرو، وانخفاض بنسبة 8٪ في دايت كوك.
وفي آذار / مارس الماضي، وبعد وقت قصير من تولي السيد دي كوينتو زمام الأمور، دعت شركة "كوك" 10 من وكالات القائمة التابعة لها إلى عرض أفكار لحملة عالمية، مما يشير إلى حدوث تغيير. المتاجر الأربعة التي تأخذ دورا رائدا في "طعم الشعور" هي: أوجيلفي نيويورك، سرا. روشمور من مدريد، سانتو بوينس آيرس وميركادو ماكان من الأرجنتين.
متجر القائمة سيرانوس-مكان من برشلونة جعلت واحدة من 10 البقع التلفزيونية. وأنشأ أوجلفي إعلانا تلفزيونيا واحدا يتضمن غطاء للملكة وديفيد باوي أغنية تحت الضغط تعرض كوكا كوسيلة لإطلاق التوترات اليومية التي يواجهها المراهقون. أوجلفي هو أيضا وراء تفعيل الرقمي الذي يسمح للمستخدمين بإدراج جيف ثلاث ثوان من موقع مصغر الكوك في وسائل الاعلام الاجتماعية للتعبير عن مشاعر مثل منتعشة، تنشيط و بابلي.
وقالت المتحدثة باسم شركة فحم الكوك ان محلات اخرى فى فحم الكوك ستسهم فى العمل مع تطور الحملة بما فى ذلك ديفيد و دينتسو و فى بى بى و ويدن & كينيدي التى خلقت "السعادة المفتوحة".
سوف يلعب التسويق دورا حاسما في محاولة فحم الكوك للتأكيد على نمو مبيعات الدولار على حجم النمو. أو كما وضع المديرين التنفيذيين، وبيع "كوكيز" بدلا من "فحم الكوك". وتتضمن الاستراتيجية المالية بيع أحجام صغيرة من العبوات قد تحتوي على كميات أقل من السيولة ولكنها أكثر ربحية على أساس كل وحدة. في حين أن الشركة تعترف فرادى فحم الكوك الفردية قد تشرب أقل، فإنه يسعى لتوسيع مجموع قاعدتها من المستهلكين.
وقال علي ديبادج، الذي يغطي شركة سانفورد سي بيرنشتاين، في مقابلة عبر البريد الإلكتروني: "التسويق الذي يدعم العلامة التجارية للسماح [زيادات الأسعار] سيكون الهدف". "بالنسبة لي، يجب أن يكون قياس قيمة العلامات التجارية حول نمو الإيرادات، وليس مجرد حجم".
'طعم الشعور' إعلان الائتمان: كوكا كولا.
وستكون استراتيجية "علامة تجارية واحدة" حاسمة في هذا المسعى. كما تسعى فحم الكوك لتوحيد العلامة التجارية تحت شخصية تسويق واحدة، فإنه سيتم وضع دايت كوك وفحم الكوك صفر كخيارات مخصصة للمشترين الذين يريدون في بعض الأحيان إصدارات السكر. وهذا يعني التحول إلى صوت العلامة التجارية واحد ووضع حد لحملات منفصلة ل دايت كوك، كوك زيرو و كوكا كولا الحياة.
في المقابلة، شرح السيد دي كينتو نهج العلامة التجارية واحد بصريا. كان يستخدم علب الكوك وفحم الكوك الكوك وفحم الكوك صفر، فضلا عن واحدة من التميمة العلامة التجارية، وهو صغير الدب القطبي محشوة، لتمثيل المستهلك فحم الكوك. وضع الدب بجانب علبة من فحم الكوك ثم وضع علب دايت كوك وفحم الكوك زيرو عدة أقدام بعيدا.
وقال المستهلكين الموالين، "دائما أحب العلامة التجارية كوكا كولا". ولكن "هناك لحظات عندما يريد هذا المستهلك للحد من تناول السكر". وفي تلك الحالات، كان فحم الكوك يجبر الناس على شراء في تعريف منفصل تماما، وأوضح، مشيرا إلى بعيد دايت الكوك وفحم الكوك الصفر علب. وقد ارتبطت حمية الكوك مع تايلور سويفت ومصممي الأزياء، في حين أن كوك صفر تحالف مع ناسكار وكرة السلة الكلية، على سبيل المثال.
وقال السيد دي كوينتو "ضمنا أننا نقول إن كوكا كولا لم تعد للجميع". ومن خلال استراتيجية العلامة التجارية الفرعية المتناثرة هذه، "كنا نلحق الضرر بالجوهر النقي لما تمثله علامة كوكا كولا - إنها علامة تجارية للجميع". ثم سحب كل العلب الثلاثة معا. ويعني نهج التخصيص أن فحم الكوك لن يكون له علامات تجارية فرعية، إلا "المتغيرات". وعلى هذا النحو، تتضمن الإعلانات في الحملة الجديدة لقطات من جميع إصدارات فحم الكوك المختلفة.
ستستمر إعلانات دايت كوك في الولايات المتحدة - في الوقت الحالي.
في الولايات المتحدة، حيث دايت كوك قد حفرت هوية فريدة من نوعها بشكل خاص، وسيتم وضع نهج العلامة التجارية واحدة على مراحل ببطء. ومن المتوقع أن تحصل على حملات منفصلة في المستقبل المنظور، كما أن المديرين التنفيذيين في أمريكا الشمالية يدرسون أفضل السبل لتنفيذ نهج العلامة التجارية الواحدة. وقالت المتحدثة باسم كوكاى "اننا سنستمر فى عرض اعلانات تروج لمنفعة او ميزة مختلفة.
ومع ذلك، ستبدأ حملة "تاست ذي فيلينغ" الأوسع نطاقا على الفور في الولايات المتحدة، ومن المتوقع أن تدعم إعلان سوبر بول القادم من شركة كوك.
وأثارت فحم الكوك نهج العلامة التجارية واحد العام الماضي عندما جعلت تغييرات كبيرة تصميم التعبئة والتغليف في العديد من الأسواق الأوروبية.
كوكا كولا تصميم حزمة في إسبانيا.
حدث التغيير الأكثر جذرية في السوق المحلي السابق للسيد دي كوينتو في إسبانيا حيث يمكن تصميم جديد يتميز اللون الأحمر على النصف العلوي من العلب، مع ألوان مختلفة على الجزء السفلي تمثل أصناف مثل الكوك صفر و كوكا كولا الضوء. وقال المديرون التنفيذيون ان شركة فحم الكوك يتم تسويقها ككوكا كولا لايت فى كل سوق باستثناء الولايات المتحدة والمملكة المتحدة واستراليا وكندا.) وستواصل شركة كوك دراسة بدائل التعبئة والتغليف قبل اتخاذ قرار عالمى.
وتعكس الحملة الجديدة ونهج العلامة التجارية الواحدة أسلوب السيد دي كينتو الذي شهد فحم الكوك من العديد من الزوايا العالمية التي عملت في مجال التسويق والأدوار غير التسويقية في مناطق متعددة.
الناس الذين يعرفون له وصفه بأنه التدريب العملي، على التوالي يتحدث زعيم الذي هو متحمس لبيع فحم الكوك - السائل. وقال أحد وكلاء الوكالة: "يعتقد ماركوس في المنتج قبل كل شيء، ويريد من الوكالات المساعدة في بيع كوكا كولا المنتج وليس فقط علامتها التجارية وأصولها". واضاف هذا الشخص "ان ماركوس يعرف ما يريد"، و "يحب ان يشارك فى الموجز والموافقة على العمل الابداعى".
السيد دي كينتو، وهو ابن رجل أعمال وممثلة، يصف نفسه بأنه "رجل تسويق"، ولكن أيضا "رجل أعمال" كان "يعيش العلامة التجارية" لسنوات عديدة.
انضم إلى كوكا كولا في عام 1982 في قسم التسويق في إسبانيا، وعمل في وقت لاحق في التوزيع والترويج. في أوائل التسعينات، كان السيد دي كينتو مدير تسويق قسم لشركة كوكا كولا جنوب شرق وغرب آسيا، وأصبح فيما بعد مدير التسويق في ألمانيا. قاد عمليات الشركة الإيبيرية لمدة 14 عاما قبل أن ينتقل إلى أتلانتا في يناير 2018 عندما تولى دور المنظمة العالمية للسياحة.
في أيامه الأخيرة في إسبانيا، حصل السيد دي كينتو على جائزة إعلانية إسبانية كبيرة نيابة عن كوكا كولا لحملة تسمى "بنديتوس باريز" أو "البارات المباركة"، التي كانت مقصورة على الحانات الإسبانية المريحة التي تبيع فحم الكوك.
"السعادة المفتوحة"، حصل على الكثير من الجوائز أيضا، بما في ذلك مساعدة فحم الكوك الفوز أد إيدج ماركيتر من السنة في عام 2018 وكان كان المبدع ماركيتر من السنة في عام 2018. وقال السيد دي كينتو أن السعادة المفتوحة "لعبت دورا". لكنه يفضل ما وصفه بأنه نهج أكثر توازنا الذي يحافظ على موقف العلامة التجارية المتفائلة في حين النسيج في المزيد من الرسائل المنتج.
وقال السيد دي كوينتو: "عندما نبدأ في الإفراط في التفكري، بدأنا دون وعي في خلق مسافة مع الناس". واضاف "اننا نتخلف عن بعض الامور". "الناس الذين هم اليوم 14 أو 16 لم يسمعوا عن معظم فوائد المنتج." فحم الكوك هو "شيء أن الأذواق جيدة حقا."
كما أنه لا يضع الكثير من الأسهم في الفوز الجوائز الإبداعية. وقال "ان نفعل شيئا يولد الحب من اجل توليد الحب، لا يترجم ذلك الى مزيد من المستهلكين". و "إذا لم يترجم إلى ذلك، أنت لا تقوم بهذه المهمة".
السيراميكيات والسقالات: مزيج الفوز للهندسة الأنسجة.
في العقود القليلة الماضية، ساعدنا على زيادة عامة في عدد السكان المسنين في جميع أنحاء العالم المرتبطة بالأمراض المرتبطة بالعمر. ولذلك، هناك حاجة إلى المواد الحيوية الجديدة التي يمكن أن تحل محل الأنسجة التالفة، وتحفيز الجسم & # x02019؛ ق آليات التجدد الخاصة، وتعزيز شفاء الأنسجة. قوالب مسامية يشار إليها باسم & # x0201c؛ سكافولدز & # x0201d؛ ويعتقد أن تكون مطلوبة لنمو الأنسجة ثلاثية الأبعاد. السيراميك الحيوي، مجموعة خاصة من السيراميك الكامل أو الجزئي أو غير البلوري (على سبيل المثال، فوسفات الكالسيوم، والنظارات النشطة بيولوجيا، والزجاج و # x02018؛ السيراميك) التي صممت لإصلاح وإعادة بناء الأجزاء المريضة من الجسم، لديها إمكانات عالية كما مواد سقالة. تقليديا، وقد استخدمت السيراميك الحيوي لملء واستعادة العظام وعيوب الأسنان (إصلاح الأنسجة الصلبة). وفي الآونة الأخيرة، كشفت هذه الفئة من المواد الحيوية أيضا تطبيقات واعدة في مجال هندسة الأنسجة الرخوة. بدءا من نظرة عامة على المتطلبات الأساسية لسقالات هندسة الأنسجة، وتقدم هذه المقالة صورة مفصلة عن التطورات الأخيرة من السيراميك الحيوي التي يسهل اختراقها والمركبات، بما في ذلك ملخص عن تقنيات التصنيع المشتركة والتحليل النقدي للهيكل & # x02018؛ الملكية والبنية & # x02018؛ . وتسلط الضوء على مجالات البحوث المستقبلية في نهاية هذا الاستعراض، مع إيلاء اهتمام خاص لتطوير السقالات متعددة الوظائف استغلال الإفراج العلاجية أيون / المخدرات والتطبيقات الناشئة وراء إصلاح الأنسجة الصلبة.
المقدمة.
المصطلح & # x0201c؛ هندسة الأنسجة & # x0201d؛ كان في منتصف الثمانينيات من القرن العشرين تم تطبيقه بشكل فضفاض في الأدب في حالات التلاعب الجراحي للأنسجة والأعضاء أو بمعنى أوسع عند استخدام الأجهزة التعويضية أو المواد الحيوية. وقدم لانجر وفكانتي تعريفا واضحا (1993) على النحو التالي:
هندسة الأنسجة هي مجال متعدد التخصصات التي تطبق مبادئ الهندسة وعلوم الحياة نحو تطوير البدائل البيولوجية التي استعادة أو الحفاظ على، أو تحسين وظيفة الأنسجة.
دون شك، تهدف هندسة الأنسجة إلى توفير حل دائم لاستبدال الأنسجة التي إما معيبة أو فقدت بسبب ظروف مرضية مختلفة، وظهرت كبديل واعد للأنسجة أو زرع الأعضاء. يستخدم هذا النهج أدوات متعددة التخصصات لإنتاج الأجهزة التي لديها القدرة على دمج وتجديد الأنسجة وظيفية محددة عند الزرع. أحد المكونات الرئيسية لهذه الاستراتيجية هو إطار الاصطناعية التي يشار إليها باسم سقالة، الذي بمثابة توجيه اثنين أو ثلاثة الأبعاد (2 أو 3-D) هيكل لكل من تطوير الأنسجة الصلبة والناعمة سواء في المختبر وفي الجسم الحي . نظرا لنظامه المفتوح من المسام المترابطة، توفر السقالة بيئة مستقرة ميكانيكيا يمكن أن تستضيف الخلايا المطلوبة والمكونات البيولوجية (المصنفة في المختبر قبل الزرع)، والسماح للهجرة الخلية، والالتصاق والنمو، ودعم تنظيم النمو الأنسجة عندما زرعها في الجسم الحي (نيرم، 1991). ويتعزز هذا بشكل أكبر باستخدام & # x0201c؛ تشوير، & # x0201d؛ والتي هي لبنة بناء أخرى من هندسة الأنسجة. ويتضمن التشوير إشارات كيميائية حيوية وبيوميكانيكية (يتم تسليمها من قبل السقالة)، والتي تنشط في آليات الجسم الحي لتجديد الأنسجة، وتقابل الخلايا في خلق أنسجة قابلة للحياة، وبالتالي، تحديد ما إذا كانت السقالة يتحول إلى نسيج متكامل (روتنبرغ وآخرون، 2004؛ جونسون وآخرون، 2007).
وقد تم التحقيق العديد من المواد المختلفة وهندستها (الطبيعية والاصطناعية، بيوريسوربابل، ودائمة) لبناء السقالات. من بين هذه، وقد تم النظر في البيومترية على نطاق واسع نظرا لأن هذه المواد عموما تظهر أفضل استجابة الأنسجة مقارنة البوليمرات والمعادن (هينش، 1998). وتهدف بعض الخزانات الحيوية، مثل هيدروكسيباتيت (ها) والألومينا، إلى أن تكون أجهزة دائمة، وبالتالي فإنها لا تطلق مكوناتها في جسم الإنسان، ومن المتوقع أن تولد أي ردود فعل الجسم الأجنبي. من ناحية أخرى، إذا تم تصميمها كمواد حيوية قابلة للاشتعال (على سبيل المثال، معظم النظارات النشطة بيولوجيا) مع حركية ارتشاف مختلفة (من أيام إلى أشهر)، فإن منتجات أيون حلها (عادة كا، سي، نا، وفوسفات أيونات) يمكن معالجتها عادة عن طريق العادي (هابيبوفيتش و باراليت، 2018) أو حتى استغلالها لممارسة التأثير العلاجي المطلوب، مثل تعزيز الأوعية الدموية وخصائص مضادة للجراثيم (جيرهارد وآخرون، 2018؛ هوب وآخرون، 2018؛ مورينو وآخرون، 2018؛ ، 2018).
وبالنظر إلى الطبيعة غير العضوية والصلابة الميكانيكية من الخزانات الحيوية، فإن مجالات تطبيقها التقليدية كانت مرتبطة إصلاح الأنسجة الصلبة، مثل العظام والأسنان. ومع ذلك، فقد أظهرت العديد من الدراسات أيضا إمكانات الخزانات الحيوية كطريق مبتكرة لتجديد أنواع مختلفة من الأنسجة اللينة التالفة (باينو وآخرون، 2018b؛ ميغيز-باشيكو وآخرون، 2018a).
هذه المادة سوف ننظر إلى المواد الحيوية الحيوية المستخدمة كسقالات للهندسة الصلبة والناعمة الأنسجة. أولا، يتم فحص المتطلبات الأساسية سقالة وتعطى لمحة عامة عن الخزانات الحيوية المستخدمة لإنتاج مجموعة متنوعة من السقالات. ثم، يتم عرض تقنيات التصنيع الرئيسية المستخدمة لصنع السقالات مناقشة كل من المزايا والقيود. وتناقش أخيرا اتجاهات أخرى للبحث، وتسليط الضوء على الوعد من النظم الهندسية متعددة الوظائف التي تجمع بين & # x0201c؛ التقليدية & # x0201d؛ وخصائص جديدة من القيم المضافة الذكية لتحسين العمل العلاجي (على سبيل المثال، الإفراج أيون وتسليم المخدرات).
متطلبات سقالة والقضايا الحرجة.
وقد تم دراسة السقالات هندسة الأنسجة على نطاق واسع مع الأمل في تصميم المواد الحيوية زرع التي يمكن أن تنتج استجابة المضيف الأنسب الذي يتطلب الوضع السريري مع دعم نمو وتجديد الأنسجة المعقدة 3-D. هناك العديد من المتطلبات المقبولة على نطاق واسع والتي يجب أن تميز السقالة المثالية (هوتماشر، 2000؛ جونز وآخرون، 2007؛ جيرهارد وبوكاتشيني، 2018؛ باينو وفيتالي - بروفارون، 2018)، كما هو ملخص في الجدول & # x200B؛ الجدول 1 1.
وتتمثل الصعوبة الرئيسية في تصميم السقالات في تصميم هذه المتطلبات في وقت واحد بسبب طبيعتها المتنافسة في تلبية مطالب الأنسجة المضيفة، أي إذا تم إنجاز متطلبات محددة، فقد يتأثر أحدهما الآخر سلبا.
ومن الجوانب الحاسمة لنجاح السقالات للتطبيقات الحاملة (مثل إصلاح أنسجة العظام) الحاجة إلى تحقيق التوازن بين مسامية السقالة وممتلكاتها الميكانيكية (فيتالي-بروفارون وآخرون، 2009). كما هو موضح في الجدول & # x200B؛ الجدول 1، 1، وهي بنية مسامية عالية الترابط (عادة محتوى المسام فوق 50 & # x02009؛ المجلد٪) ضروري لتمكين الاندماج الكامل للسقالة مرة واحدة يتم زرعها. ومع ذلك، تؤثر المسامية على الكفاءة الميكانيكية للمكون، حيث تتناقص القوة والصلابة تدريجيا عندما يزداد حجم جزء المسامية (جيبسون، 1989).
إذا كان المقصود من السقالة لتكون بيورسوربابل، وتحقيق الكفاءة الميكانيكية يصبح عقبة أخرى منذ المواد القابلة للتحلل تميل إلى أن تكون ميكانيكيا أكثر وأكثر هشاشة مع مرور الوقت. مضاعفات إضافية في تطوير السقالات بيوريزوربابل هي (1) الحفاظ على قوة واستقرار واجهة خلال فترة تدهور واستبدال من قبل الأنسجة المضيف الطبيعي و (إي) مطابقة معدل ارتشاف مع أن من المتوقع تجديد الأنسجة محددة. ومن المهم أيضا أن تكون منتجات انهيار المواد الحيوية قابلة للاستقلاب بسهولة دون التسبب بأي رد فعل سلبي محلي أو نظامي (هوب وآخرون، 2018).
جانب آخر من الجدير بالذكر يتعلق الحد من عدم تطابق معامل مرونة، وهو أمر حاسم لنجاح على المدى الطويل من الغرس الترابط إلى كل من الأنسجة الصلبة واللينة. وأظهرت العديد من الدراسات أن التغير المتقطع في خصائص مرنة في الأنسجة & # x02018؛ واجهة زرع النتائج في التدرجات الإجهاد كبير إلى الأنسجة المضيف مما يؤدي في نهاية المطاف إلى فشل المواد المزروع (هينش و غرينسبان، 2018).
تحسين جميع المعلمات الفيزيوكيميائية تلخيصها في الجدول & # x200B؛ Table1 1 is an extremely difficult task due to their complex and still partially unexplained interlocking. The rate and quality of tissue integration have been related to a dependence on scaffold pore size, porosity volume fraction, and pore interconnection (Karageorgiu and Kaplan, 2005). Moreover, the role of strut microstructure and pore geometry has to be considered with respect to their influence on entrapment and recruitment of growth factors in addition to their influence on scaffold mechanics. Deconvoluting the relative effects of these parameters is complicated by the bioactivity of many bioceramics, which is mediated through two principal mechanisms: (i) directly through dissolution and release of ionic products in vitro and in vivo , elevating local concentrations of soluble species that interact directly with local cells or influence cell behavior by their effect on local pH and (ii) indirectly through the influence that surface chemistry will have on protein adsorption, growth factor entrapment, and subsequent cell attachment and function. A valuable picture on these important issues in view of optimizing scaffold design and fabrication has been recently given by Hing (2005).
A highly challenging field of research concerns the strategies for imparting special “biological” properties to tissue engineering scaffolds, with particular reference to the use of bioactive glasses. It has been demonstrated that key mechanisms leading to enhanced new bone growth are related to the controlled release of ionic dissolution products (e. g., soluble silica and calcium ions) from the degrading bioactive glass (Hench, 2009). Specifically, a series of studies have shown that bioactive silicate glasses and their ionic dissolution products enhance osteogenesis by regulating osteoblast proliferation, differentiation, and gene expression (Xynos et al., 2000, 2001; Jell and Stevens, 2006; Jell et al., 2008). Sun et al. (2007) showed that 45S5 Bioglass ® promotes human osteoblast proliferation: in the presence of critical concentrations of Si and Ca ions, within 48 h osteoblasts that are capable of differentiating into a mature osteocyte phenotype begin to proliferate and regenerate new bone and, at the same time, osteoblasts that are not in the correct phase of the cell cycle and unable to proceed toward differentiation are switched into apoptosis by the ionic dissolution products.
The relative contribution of specific ion dissolution products from bioactive glasses or Si-substituted calcium phosphates to osteogenesis have been controversially debated in the literature (Bohner, 2009; Hoppe et al., 2018). It has been hypothesized that the high Si concentration from bioactive glass could be a major factor in stimulating osteoblasts to grow quickly, which might be effective for melt-derived bioactive glasses (Xynos et al., 2001; Sun et al., 2007). However, Bielby et al. (2004) found no significant differences in the proliferation of human primary osteoblasts grown in conditioned cell culture media containing similar Ca, P, and Na ions but different Si ion concentrations released from a sol‘gel bioactive glass. Therefore, further studies are required to gain quantitative knowledge and to confirm the mechanisms by which ion dissolution products from bioactive glass may affect gene expression in bone cells.
Recent findings also indicate that controlled release of low concentrations of ionic dissolution products from bioactive glasses can induce angiogenesis that plays a key role in the regeneration process of both hard and soft tissue (Gerhardt et al., 2018; Vargas et al., 2018). The role of angiogenic and osteogenic factors in the adaptive response and interaction of osteoblasts and endothelial cells during the processes of bone development and bone repair has been reviewed in detail by Kanczler and Oreffo (2008).
Early studies suggesting that the ability of bioactive glasses to induce differentiation of non-osseous cells (e. g., muscle precursor cells exposed to phosphate glasses) have been recently reported (Ahmed et al., 2004).
Bioceramics: A Short Overview.
Bioceramics is a large class of specially designed ceramics for the repair and reconstruction of diseased or damaged parts of the body. Current forms of application in clinical use include solid pieces (used, for instance, in the reconstruction of middle ear ossicles or as load-bearing components of joint prostheses), powders and granules for bone filling, coatings on metal joint prostheses, injectable formulations (bone cement), and porous scaffolds (Figure (Figure1). 1 ). Based on their tissue response, bioceramics can be classified into three major families: nearly inert (e. g., alumina and zirconia), bioactive (e. g., bioactive glass), and resorbable ceramics [e. g., β- and α-tricalcium phosphate (TCP)] (Hench, 1996). Nearly, inert ceramics are generally used as femoral heads and acetabular cups for hip replacement as well as to fabricate dental implants; however, usually these materials are not used as scaffolds due to their inertness that triggers the formation of a 1- to 3-μm thick “protective” fibrous capsule on the surface of the implant. Even if there is no aggressive foreign body response, there is no bond between the implant and the host tissue (Hench, 1996).
The ability of creating a stable bond with the host tissue is of primary importance in the selection of bioceramics for making scaffolds. In this regard, bioactive as well as bioresorbable ceramics represent a valuable solution. Furthermore, the latter ones exhibit the added value of degrading gradually over a period of time while being replaced by the natural host tissue and, therefore, disappear once their task of acting as templates for new tissue has been completed (Baino and Vitale-Brovarone, 2018; Fu et al., 2018a, b).
The following sections focus on the main types of bioceramics that are currently used to fabricate scaffolds by schematically grouping the materials in their specific class from a microstructural viewpoint: crystalline ceramics, bioactive glasses, glass‘ceramics, and composites. Applications and clinical developments are also shortly discussed.
Crystalline Ceramics.
The major representatives of this class are calcium phosphates that are among the most widely used crystalline ceramics for bone tissue regeneration. This is due to their exceptional properties that include (i) similarity, in terms of structure and chemical composition, to the mineral phase of bone, and (ii) osteoconductivity, i. e., the ability of providing a biocompatible interface along with bone migrates, and thus bonds to the host tissue without the formation of scar tissue (Cao and Hench, 1996; LeGeros, 2002).
Synthetic HA (Ca 10 (PO 4 ) 6 (OH) 2 ) has a stoichiometric calcium-to-phosphate ratio of 1:67 and, from a crystallographic point of view, is the calcium phosphate phase most similar to natural bone apatite. Because of its excellent biocompatibility and osteoconductivity, HA is successfully used as bone filler in the form of cement or granules and in the form of coatings on metallic joint prostheses. However, its use as a scaffold material is limited because of its low mechanical properties and extremely slow resorption rate (Barrere et al., 2006).
It is partly for this reason that other calcium phosphates have emerged with different degrees of solubility depending mainly on the calcium-to-phosphorous ratio (the rate of dissolution increases with decreasing Ca/P ratio) as well as on the crystallographic structure (Hench, 1996; Dorozhkin, 2007, 2018a, b). The interested reader is addressed to specific publications dealing with calcium phosphate bioceramics (Legeros et al., 2003; Dorozhkin, 2018).
A common drawback to all calcium phosphate bioceramics produced in a porous form is their low mechanical properties (brittleness, low fatigue strength) that largely limit their clinical use to non-major load-bearing parts of the skeleton. We have to consider that calcium phosphate scaffolds are often consolidated by sintering that, however, does not occur under a viscous flow regime, and thus may not lead to full densification of scaffold struts. Other materials, such as a few bioactive glass‘ceramics and composites, seem to be more suitable for fabricating high-strength, tough scaffolds (Baino and Vitale-Brovarone, 2018; Fu et al., 2018a, b).
Besides calcium phosphates, alumina is another well-known example of crystalline ceramic that has been widely used for decades to fabricate components of hip and knee joint prostheses (femur head, acetabular cup, and tibial plate) primarily due to its high-strength suitable for load-bearing applications, excellent wear resistance, and bioinertness (associated with maintenance of the desired physico-chemical and mechanical properties over time) (Rahaman et al., 2007). Porous alumina is clinically used only in the fabrication of orbital implants (spherical porous scaffolds) for enucleation that should allow fibrovascular ingrowth through the pore network and remain in the patient’s anophthalmic socket indefinitely without undergoing degradation (Baino et al., 2018; Baino and Vitale-Brovarone, 2018a).
Bioactive Glasses.
It has been extensively proved that bioactive glasses are able to strongly bond to living tissues (primarily bone) creating a stable interface and to trigger a range of biological responses, such as tissue regeneration and angiogenesis while degrading over time (Hench, 2006; Jones, 2018).
These properties of bioactive glasses arise from a time-dependent modification of their surface that occurs on exposure to physiological environment. The glass surface forms a biologically active layer of HA that provides the bonding interface with host tissues, while the dissolution products (Si, Na, Ca, phosphate ions, etc.) stimulate the cells to produce new tissue (Cao and Hench, 1996).
The first bioactive glass, belonging to the 45SiO 2 ‘24.5Na 2 O‘24.5CaO‘6P 2 O 5 (wt.%) system (45S5 Bioglass ® ), was developed by Prof. Larry Hench and coworkers in the late 1960s (Hench et al., 1971) and is in clinical use since 1985. Over the years, many other silicate, borate, and phosphate glasses have been proposed for biomedical applications, as reviewed elsewhere (Baino and Vitale-Brovarone, 2018; Rahaman et al., 2018).
Bioactive glasses are commonly produced by traditional melting-quenching routes or the sol‘gel technique. Melt-derived glasses can be poured into molds to produce rods and bars or cast as components of various sizes and shapes. The melt can also be quenched in cold water to obtain a “frit,” i. e., granules and pieces of different sizes that can be easily powdered and further processed to fabricate porous scaffolds (Baino and Vitale-Brovarone, 2018). Finally, the glasses can be also spun to fabricate glass fibers that in the last decade have attracted increasing interest for application in soft-tissue engineering, especially the phosphate ones, as guides for muscle or nerve repair (Vitale-Brovarone et al., 2018a) as well as for the fabrication of glassy bone scaffolds (Gu et al., 2018). For melt-derived silicate glasses, the silica content should be <60 mol.% to allow the glass to bond with bone (Wilson et al., 1981). However, HA layer formation and bone bonding can be also achieved with glasses with up to 90 mol.% silica if the glass is obtained by a sol‘gel process (Li et al., 1991). In general, sol‘gel glasses were found to form a nanocrystalline HA surface layer more rapidly than melt-derived glasses due to the higher surface area available for ion-exchange phenomena (tens vs. few meter square per gram).
In the last decade, the advent of mesoporous bioactive glasses (MBGs) allowed combining superior bioactive properties (formation of a surface HA layer within few hours from contact with biological fluids) and drug uptake/release abilities in a single, multifunctional biomaterial (Arcos and Vallet-Regí, 2018).
Glass‘Ceramics.
Glass can be converted by heating into a partially crystalline material containing various kinds of crystalline phases with controlled size and content depending on the thermal treatment parameters. Generally, the resulting glass‘ceramic material exhibits superior mechanical properties with respect to its parent glass, specifically higher elastic modulus, hardness, failure strength, and wear resistance. Scaffolds are often produced by sintering, which requires glasses to be heated above their glass transition temperature in order to initiate localized flow. Many bioactive glasses, including 45S5 Bioglass ® , crystallize immediately above their glass transition temperature; therefore, sintered bioactive glass scaffolds are often glass‘ceramic scaffolds (Gerhardt and Boccaccini, 2018; Baino and Vitale-Brovarone, 2018).
45S5 Bioglass ® - derived scaffolds suffer from some drawbacks as the base glass tends to crystallize before full densification is achieved (sintering end), thereby originating extremely brittle glass‘ceramic porous products; furthermore, scaffold bioactivity seems to be partially suppressed by the development of a sodium‘calcium‘silicate crystalline phase (Chen et al., 2006). In the attempt to overcome these drawbacks, interesting results have been obtained by various research groups that proposed alternative glass‘ceramics. For instance, Vitale-Brovarone et al. (2007) used the bioactive glass CEL2 (45SiO 2 ‘26CaO‘15Na 2 O‘3P 2 O 5 ‘4K 2 O‘7MgO mol.%) to fabricate foam-like glass‘ceramic scaffolds exhibiting compressive strength up to 1 MPa (porosity 70 vol.%) and an excellent biological compatibility with osteoblasts; more recently, the same research group successfully optimized the process parameters to obtain scaffolds with higher strength (5‘6 MPa) within the typical range of cancellous bone (2‘12 MPa) (Vitale-Brovarone et al., 2009; Baino et al., 2018). Glass‘ceramic bone-like scaffolds based on the experimental glass SCNA (57SiO 2 ‘34CaO‘6Na 2 O‘3Al 2 O 3 mol.%) can reach a compressive strength of 15 MPa (porosity around 65 vol.%), which makes them suitable for load-bearing applications but retain an extremely moderate bioactivity (Vitale-Brovarone et al., 2018b; Baino and Vitale-Brovarone, 2018).
Composites.
A crucial aspect for the success of scaffolds in tissue engineering and regeneration of tissues is that the structure and properties of the scaffolds must be pertinent to the tissue concerned and the mechanical loads that it will experience in vivo . Like most ceramic materials, bioceramics have the disadvantage of exhibiting low fracture toughness (i. e., brittleness) and this could limit their use in load-bearing applications. Furthermore, their high stiffness may restrict the use of bioceramics in non-osseous applications, where adequate compliance with soft tissues is necessary (Miguez-Pacheco et al., 2018a).
One approach that aims to overcome these problems is the combination of bioceramics with polymers to produce a composite scaffold, which makes the most of both materials. Typically, bioceramics are added as fillers or coatings to the polymer matrix to improve its mechanical proprieties, i. e., to increase strength and stiffness as well as to effectively induce enhanced bioactivity (Mohamad Yunos et al., 2008).
Following an alternative strategy, Bretcanu et al. (2007) fabricated porous composites by using a bioceramic scaffold (45S5 Bioglass ® ) as a porous inorganic matrix and by coating it with poly(3-hydroxybutyrate) (P3HB). The polymer was specifically introduced to strengthen the 45S5 Bioglass ® scaffold structure, in fact, the P3HB layer acted as a glue, thereby holding the inorganic particles together when the scaffold struts started to fail. The compressive strength of such a composite scaffold (up to 1.5 MPa) was twice than that of bare 45S5 Bioglass ® scaffolds (up to 0.4 MPa) (Chen et al., 2006).
Added values, such as drug uptake/release, are also provided to the composite if mesoporous glass particles are used as a second phase (Arcos and Vallet-Regí, 2018).
Both non-degradable and degradable polymers have been used in the fabrication of composite scaffolds; however, stable polymers often have low biocompatibility as they tend to become surrounded by a fibrous capsule once implanted. Therefore, there have been several attempts to create composites based on the combination of biodegradable polymers and bioceramics. The first composites investigated were comprised of HA or TCP used as inorganic phases while poly( l - lactic acid) (PLLA), poly( d / l - lactic acid) (PDLLA), poly(glycolic acid) (PGA), and their copolymers (PLGA) as organic ones (Ambrosio et al., 2001; Deng et al., 2001; Kasaga et al., 2001; Xu et al., 2004). HA/polyethylene porous composites, marketed under the commercial name “Hapex,” are currently used in the clinical practice for the repair of orbital floor fractures (Tanner, 2018).
More recently, attention has moved toward nano-bioceramic/polymer composites, which have the potential to improve interaction with the host tissue/cells (Erol-Taygun et al., 2018). In this regard, one of the most fascinating challenges is to develop smart composite biomaterials with nanoscale interaction between the bioactive inorganic phase and the organic one, so that the scaffold could degrade as a single material rather than having mismatched degradation rates of glass and polymer phase. As recently underlined by Jones (2009), this intimate interaction should allow cells to come into contact with both phases at one time, and the scaffold should degrade at a single rate.
A special mention should be devoted to the so-called “star gels,” which are a particular type of organically modified silicates (“ormosils”) having an organic core surrounded by flexible arms that are terminated in alkoxysilane groups able to form a silica-like network during the sol‘gel process (Vallet-Regí et al., 2006). These hybrid materials show bioactive properties and have fracture toughness higher than that of sol‘gel glasses and comparable to that of cancellous bone, thus having promise for tissue engineering applications that require good long-term fatigue behavior (Manzano et al., 2006).
Fabrication of bioceramic/metal composites has been also reported where the ceramic phase is applied in the form of a coating. Metallic materials, such as stainless steel, titanium, and Co‘Cr‘Mo alloy, have become the materials of choice for load-bearing prostheses due to high-strength, good fatigue resistance, and favorable machining properties. Some metallic materials, however, may produce adverse effects such as the release of significant amounts of metal ions into the tissues, which may result in complications, such as inflammatory and immune reactions (Alvarez and Nakajima, 2009). Thus, there is a need to further improve the biocompatibility between metallic materials and host tissue (primarily bone). وانغ وآخرون. (2009) prepared porous TiNbZr alloy scaffold coated with calcium phosphate to improve osteoconductivity. Cell culture experiments showed that the surface-modified TiNbZr scaffolds were more favorable for the adhesion and proliferation of osteoblast-like cells compared to bare metal scaffolds.
Fabrication Technologies of Bioceramic Scaffolds.
A wide range of processing routes has been proposed for the production of bioceramic porous scaffolds for tissue engineering. These include techniques developed ad hoc or often adapted from other contexts, such as foaming, solid freeform fabrication (SFF), starch consolidation, organic phase burning-out, and sponge replication.
These various methods provide a mean to control the 3-D structure of tissue engineering constructs, and processing can strongly influence various characteristics of the scaffold. Each method, in fact, is best suited for producing a specific range of pore size and distribution, interconnectivity and overall porosity in addition to strut thickness and orientation. Thus, the most appropriate technique must be accurately selected to meet the demands of the specific type of tissue (Colombo, 2006).
Moreover, each fabrication method differs in terms of overall cost, making some of them attractive for a large-scale production, while others are more appropriate for the development of value-added products.
The following sections examine the main available techniques to fabricate bioceramic scaffolds, highlighting time by time the merits and drawbacks of each method. A comparison of these techniques is given in Table الجدول 2. 2 - An overview of the main methods used to fabricate bioceramic containing composite scaffolds is also provided.
Foaming Methods.
Highly porous ceramics can be produced by dispersing a gas in the form of bubbles into a ceramic suspension or colloidal sols, followed by solidification, to obtain pores in the range of 20 μm up to 1‘2 mm (Jones and Hench, 2003). The various foaming techniques developed in the literature are based on two approaches: (i) incorporating an external gas by mechanical frothing, injection of a stream of gas, or introduction of an aerosol propellant and (ii) evolution of a gas in situ . The decisive step in direct foaming methods is the stabilization and setting of the wet foams. These, in fact, need to be set in order to maintain their porous morphology before heating at high temperature for sintering/ceramization. Furthermore, several transformations in the bubble structure might occur within the interval between foam generation and foam solidification. For instance, the gas bubbles initially have a spherical shape (nucleation phase) and later grow as polyhedral cells (Colombo, 2006). In order to retain the cellular morphology and prevent the collapse of the foamed structure, surfactants are generally used to stabilize the bubbles formed in the liquid phase as they reduce the surface tension of the gas‘liquid interfaces. Surfactants stabilize the system for a limited period of time; hence, a further mechanism is then required to provide a more permanent form of stabilization (Sepulveda and Binner, 1999).
The incorporation of bubbles can be brought about by a variety of processing routes.
H 2 O 2 foaming involves mixing ceramic powder with an aqueous solution of H 2 O 2 as a foaming agent; then, the resulting mixture is cast into molds and stored into an oven at 60°C. At this temperature, H 2 O 2 decomposes and the oxygen released tends to form bubbles in the slurry and, thus, gives rise to the foaming process. The sample is then sintered to obtain crystalline ceramics, bioactive glass, and calcium phosphate scaffolds depending on the initial powders (Navarro et al., 2004). By varying the amount of H 2 O 2 incorporated and the thermal treatment, the percentage of porosity and pore size can be modulated. However, an intrinsic shortcoming of this foaming method is that pores are interconnected only in a laminar manner, resulting in poor interconnection in the direction perpendicular to the laminae (Li et al., 2002).
An alternative to H 2 O 2 foaming is in situ polymerization of an organic monomer (or gel-cast foaming). A high-solid-load aqueous ceramic suspension is prepared that also incorporates an organic monomer, which must be soluble in water (e. g., acrylates) together with an initiator and a catalyst to provide in situ polymerization (Ortega et al., 2002; Wu et al., 2018b). The two latter ingredients are necessary to control the actual beginning of the polymerization reaction (i. e., the induction time ‘ period of inactivity between the addition of reagents and the polymerization reaction onset), which, in the processing of porous ceramics, must take place during casting. After the addition of a foaming agent (surfactant), the suspension is mechanically agitated to obtain a wet ceramic foam. The foam is cast into the appropriate mold and, after polymerization is complete, the green body is strong enough to be removed from the mold and transferred to an oven for drying, burning-out of the polymer, and sintering of ceramic particles. The resulting ceramic foam exhibits higher strength magnitudes compared to other conventional methods due to the less flawed structure (low amount and size of the defects) and dense struts and walls produced. However, the porous structure results poorly interconnected and non-homogeneous (Sepulveda and Binner, 1999). The final cell size distribution and strut thickness can be engineered during processing by controlling enlargement of bubbles and thinning of lamellas (cell walls) upon the induction period. This can be efficiently done by altering the concentration of the initiator and the catalyst; however, other parameters such as temperature and pH have also been found to play a significant role (Sepulveda and Binner, 1999). Another advantage of this technique is the ability to produce porous scaffolds with a high degree of complexity. The casting process, in fact, allows shaping forms/profiles without the need of machining. Additionally, if further details are required, the dried green foams are strong enough to withstand machining (Colombo, 2006). Gel-cast foaming has also been combined with the foam replica method (the latter described in Section “Sponge Replica Method”) to produce HA scaffolds with interconnected pores (Ramay and Zhang, 2003). Gel-cast foaming can also involve the use of gelling polymers (e. g., gelatin) with no need for initiator and catalyst (e. g., gelation can take place with a decrease in temperature); in this case, a supplementary freeze‘drying step before sintering is necessary (Novajra et al., 2018a, b). The structure of a scaffold produced by gel-cast foaming is shown in Figure Figure2 2 .
A third option is sol‘gel foaming, a process that combines sol‘gel technology ‘ a chemical-based wet synthesis route, which involves the conversion of a solution containing ceramic precursors (sol) into a network of covalently bonded silica via inorganic polymerization reactions ‘ and mechanical frothing (Akkus et al., 2002). After heat treatment, a glass or glass‘ceramic construct can be obtained exhibiting a hierarchical structure with interconnected macropores for tissue ingrowth (10‘500 μm) and a mesoporous texture (channels in the 2‘50 nm range) that promotes cell adhesion and adsorption of biological metabolites while intensifying the rate of surface reactions in vitro and in vivo (especially the formation of surface HA layer) (Jones and Hench, 2004). The latter feature is tuned by including in the sol a surfactant that acts as a template for supramolecular self-assembly; this process is also referred to as evaporation-induced self-assembly (EISA) (Brinker et al., 1999). The steps involved in the process are (1) preparation of a sol from a mixture of distilled water, appropriate precursors (metal alkoxides, such as tetraethylorthosilicate and triethylphosphate), salts (CaNO 3 ), and a hydrolysis catalyst (dilute acid), (2) foaming by vigorous agitation with the addition of a gelling agent, a surfactant, and distilled water, (3) casting of foamed mixture into molds, (4) aging to achieve gelation of the sol, (5) removal of the solvent by drying at low temperature, and (6) sintering to obtain porous components. Highly bioactive bone-like 3-D scaffolds can be successfully obtained by this method (Jones and Hench, 2004); an unavoidable limitation is the intrinsic brittleness of the porous product due to the nanoporous texture, which poses critical issues in view of the safe implantation of the device (too low mechanical properties) (Baino and Vitale-Brovarone, 2018).
Starch Consolidation.
This method uses corn-, rice-, or potato-derived starch granules both as a pore former and a binder to fabricate porous ceramics. The main advantages of this processing technique are its low cost and its environment-friendly nature.
The process involves mixing of starch granules, ceramic powder, and distilled water to obtain a suspension that is continuously stirred and maintained at 60‘80°C. In this temperature range, starch undergoes swelling due to water absorption, leading to a gel-like material that, after consolidation, is thermally treated to burn-out the organic phase and to sinter the ceramic matrix. Low dimensional changes occur during consolidation and drying, which ease the control of the ultimate dimensions of the component after sintering (Lyckfeldt and Ferreira, 1998).
Historically, this method was one of the first used to process bioactive glasses in a porous form (Vitale-Brovarone et al., 2004, 2005); albeit the mechanical properties of the resulting glass‘ceramic scaffolds (compressive strength about 6 MPa) were comparable to those of cancellous bone (2‘12 MPa), the porosity was too low (40 vol.%) and poorly interconnected for deeming an eventual clinical application. Therefore, other polymer phases (apart from starch) have been experimented as a pore former for tissue engineering bioactive glass scaffolds.
Organic Phase Burning-Out.
The organic phase burning-out (or space-holder method) is another strategy for producing porous scaffolds. In this method, ceramic powders are mixed together with a solid polymeric phase of synthetic [e. g., poly(methyl methacrylate) or polyethylene microbeads] (Baino et al., 2009) or natural origin (e. g., rice husk) (Wu et al., 2009). Afterwards, the blend is pressed to obtain a “green body” and thermally treated at high temperature. Upon heating, the polymeric particles that fill in the space within the volume of the component decompose, whereas the inorganic particles sinter, leading to a porous body displaying a negative replica of the original sacrificial template (Colombo, 2006; Baino and Vitale-Brovarone, 2018). Since sintering requires higher temperatures than pyrolysis, the ceramic matrix has to be partially consolidated before removal of the sacrificial material, so that the porous structure does not collapse during the polymer removal step; therefore, binders are generally incorporated in the mixture (Studart et al., 2006).
Both closed and open cell ceramic foams can be obtained, depending on the volume fraction and nature (significantly affecting the amount of gas developed during burning-out) of the sacrificial polymer. Nevertheless, pore interconnectivity is generally low due to the difficulty in maintaining a homogeneous distribution of the polymer spheres (Baino et al., 2009; Wu et al., 2009). Due to the presence of thick, dense struts, scaffolds produced by this method can exhibit high mechanical strength, even comparable to that of cortical bone (Baino et al., 2009).
In order to attain a highly porous structure, a large proportion of the polymeric phase in the starting mixture is necessary. This typically causes the development of a large amount of gas during heating that can cause the formation of cracks in the ceramic body (Bretcanu et al., 2018). Thus, the process needs to be attentively controlled to avoid the formation of defects in the final component.
Sponge Replica Method.
The sponge replication method was patented by Schwartzwalder and Somers (1963) and, since then, it has become the most popular and effective method of producing foam-like ceramic scaffolds for tissue engineering. This success is primarily attributed to the simplicity and flexibility of the method, as it is applicable to any ceramic material that can be appropriately dispersed into a suspension. It has been observed that the reticulated open-cell structure (i. e., consisting of interconnected voids surrounded by a web of ceramic ligaments, the struts) that can be obtained using the foam replica method is the most suitable for bone tissue engineering scaffolds (Table (Table1) 1 ) as it closely mimics the 3-D trabecular architecture of cancellous bone (Figure (Figure3). 3 ). Another key strength of this method is that the starting sponge can be easily cut and conformed to match the size and shape of the tissue defect, so that ‘ at least ideally ‘ personalized scaffolds could be fabricated according to the patient’s clinical needs (Vitale-Brovarone et al., 2009).
This process involves the impregnation of an open-cell porous template of synthetic (typically a polyurethane sponge) or natural material (e. g., marine sponge) with a slurry of finely divided ceramic powder and a binding agent [e. g., poly(vinyl alcohol), colloidal silica]. The sponge is then squeezed to remove the excess slurry and enable the coating of the sponge struts with a thin layer of the slurry. After drying, the coated template is pyrolyzed while the remaining ceramic coating is sintered at higher temperatures to obtain a porous ceramic exhibiting the same architecture as the sacrificial template (positive replica). Therefore, the morphological characteristics of the ceramic foam are directly related to those of the polymeric template used (Schwartzwalder and Somers, 1963).
The most crucial step in the process is the production of a uniform coating on the polymeric structure. In more detail, the affecting factors are (1) the rheology of the impregnating suspension and (2) its adhesion on the struts of the polymeric sponge. The suspension should be sufficiently fluid to allow penetration into the cells of the sponge upon compression and expansion, but viscous enough to avoid drainage of the remaining coating. It is also worth mentioning that incomplete removal of the excess slurry leads to a structure with a certain degree of closed porosity (Schwartzwalder and Somers, 1963; Colombo, 2006).
The sponge replica method has been recently applied in combination with EISA method to produce hierarchical porous bioactive glass scaffolds, where a polyurethane foam and a surfactant were used as co-templates for scaffold macropores and mesopores, respectively (Zhu et al., 2008; Zhu and Kaskel, 2009). These scaffolds are highly bioactive but exhibit dramatic brittleness due to the presence of the mesoporous texture. وو إت آل. (2018) tried to improve the mechanical properties of these hierarchical porous constructs by depositing a silk coating on the strut, but their compressive strength still remained too low (few hundreds of kilopascal) for deeming a safe clinical application.
Solid Freeform Fabrication.
Solid freeform fabrication, also referred to as rapid prototyping, denotes a set of emerging moldless techniques that use layer-wise manufacturing strategies to create scaffolds with customized external shape and pre-designed internal architecture (strut features, pore arrangement, size, and distribution) directly from a computer-generated 3-D model. This model is a 3-D reconstruction of the patient-specific tissue defect, which can be acquired from patient’s computed tomography data or magnetic resonance imaging. Further details regarding the micro-environment can be developed by making use of computer-aided design (CAD). One of the main advantages of SFF technology is the ability to fabricate components with highly reproducible architecture and compositional variation (Hutmacher et al., 2004). This set of techniques is particularly valuable to produce functionally graded bioceramic and composites (Miao and Sun, 2018).
A number of SFF strategies have been adopted to manufacture scaffolds for tissue engineering applications (Hollister, 2005).
Stereolitography (SLA) uses a blend of ceramic powders and a photocurable monomer. A UV laser beam, which cures the monomer, is selectively scanned over the surface of the blend following the cross-sectional profiles of the CAD model; subsequent layers are built directly on top of previously cured layers with new layers of blend being deposited. After this step, the material not cured by the laser can be drained away and sintering is performed to produce the final object (Levy et al., 1997; Hutmacher et al., 2004). Fabrication of HA and amorphous calcium phosphate scaffolds for hard tissue repair using SLA has been extensively reported in the literature (Hollister, 2005; Scalera et al., 2018). Recently, Tesavibul et al. (2018) proposed the use of a lithographic method to fabricate 45S5 Bioglass ® - derived scaffolds with highly ordered pore arrangement. Stereolitographic fabrication of wollastonite containing glass‘ceramic scaffolds with high-strength properties was also reported by Sabree et al. (2018) (Figure (Figure4 4 ).
Selective laser sintering (SLS) is a technique that employs a CO 2 laser beam to sinter thin layers of powdered ceramic materials to form 3-D objects. The laser beam is scanned over the powder bed following CAD data, thus raising the temperature of powders only in selected areas. In this way, particles fuse together and subsequent layers can be built directly on the top of the previously sintered material. Scaffolds from nano-HA and β-TCP as well as ceramic/polymer composites have been prepared using SLS technology (Hutmacher et al., 2004). Gao et al. (2018) recently reported the fabrication of biphasic calcium phosphate scaffolds by SLS, too (Figure (Figure5 5 ).
A third very valuable option to produce porous ceramic scaffolds is 3-D printing (3DP), developed in the early 1990s at MIT. 3DP is a powder-based technology that employs a printer head ‘ which moves in accordance to the object profile being generated by a computer system ‘ to eject and deposit binder onto the powder surface and bonds the granules in the selected regions. Subsequently, a fresh layer of powder is laid down by a set of rollers. The cycle continues until the whole object is completed and at this point an airflow is used to remove unbound powder. The objects are sintered at high temperatures to achieve sufficient strength of the bodies and to remove the binder safely. Binders can be either organic (e. g., starch based) or water based. A wide variety of ceramic materials for tissue engineering have been processed using 3DP, such as HA, calcium phosphates, calcium sulfate, bioactive glasses, and ceramic composites, with a regular 3-D architecture and pore arrangement (Figure (Figure6); 6 ); however, extensive optimization is needed to process good quality parts with 3DP for any new material/composition, which is ‘ together with the quite high cost of instrumentation ‘ the major drawback of this approach (Bose et al., 2018).
Methods referred to as robocasting and direct ink-write assembling belong to the broad class of 3DP techniques. In this regard, bioactive glass scaffolds with a regular arrangement of pores in 3-D and extraordinarily high mechanical performances in compression and flexure were proposed for possible application in the substitution of cortical bone and load-bearing segments of the skeleton (Fu et al., 2018a, b; Liu et al., 2018).
3-D printing has also been applied to fabricate MBG scaffolds. Yun et al. (2007) and Garcia et al. (2018) prepared hierarchical 3-D porous MBG scaffolds using a combination of double polymer template and rapid prototyping techniques. In their study, they mixed MBG gel with methylcellulose and then printed, sintered at 500‘700°C to remove polymer templates and obtained MBG scaffolds. Although the obtained MBG scaffolds have uniform pore structure, their mechanical strength is compromised because of the incorporation of methylcellulose, which results in some micropores. Recently, Wu et al. (2018a) reported a new facile method to prepare hierarchical and multi-functional MBG scaffolds with controllable pore architecture, excellent mechanical strength, and mineralization ability for bone regeneration by a modified 3DP technique using poly(vinyl alcohol) as a binder. The obtained 3DP MBG scaffolds possess a compressive mechanical strength (16 MPa), which is about 200 times that of the MBG scaffolds prepared using a traditional polyurethane foam as a template.
Thermal Bonding of Short Glass Fibers.
Porous 3-D scaffolds can also be obtained using glass fibers as a starting material. The fibers, with diameters typically ranging from tens to few hundreds of micrometers, are cut and disposed into a mold in a random arrangement with porosity originating from the free space between them. Then, a thermal treatment allows this porous structure to be stabilized by thermally bonding (sintering) the glass fibers in order to obtain glass scaffolds. The scaffolds produced by this method show a high degree of pore interconnectivity and the final scaffold structure can be tailored acting on the fiber size, the sintering time, and temperature (Pirhonen et al., 2003; Moimas et al., 2006).
Since 45S5 Bioglass ® is not easy to draw into fibers without devitrification due to its narrow working range, other glass formulations that can be easily spun have been proposed in the literature for fibrous scaffold production, in particular, silicate (e. g., 13‘93, 9‘93) and borate bioactive glasses (e. g., 13‘99B3) as well as mixtures of them (Gu et al., 2018). A porous scaffold made of glass fibers with nominal composition 11.1‘12.0 Na 2 O, 15.0‘17.1 K 2 ⋅O, 2.8‘3.3 MgO, 12.7‘15.2 CaO, 2.7‘3.8 P 2 O 5 , 1.0‘1.4 B 2 O 3 , 0.0‘0.6 TiO 2 , and 48.5‘52.0 SiO 2 wt.% (Tirkkonen et al., 2018) is currently available on the market (Inion BioRestore™, Inion Oy, Tampere, Finland) as a graft material (porous morsels) for bone defect restoration. Research studies on thermally bonded phosphate glass fibrous scaffolds are currently ongoing (Figure (Figure7 7 ).
Processing Technologies for Bioceramic Containing Composite Scaffolds.
Numerous fabrication techniques have been described to produce 3-D porous bioceramic/polymer composite scaffolds, including space-holder, gas foaming, thermally induced phase separation (TIPS), and SFF. These methods have been extensively reviewed in the literature (Rezwan et al., 2006; Mohamad Yunos et al., 2008). Among all, TIPS can be considered the technique of choice if scaffolds with highly oriented porosity need to be prepared. This pore structure differs considerably from the isotropic structure and equiaxed pores that are typically obtained by the “conventional” methods. The TIPS process has been widely used to produce composite scaffolds based on PLGA and PDLLA foams containing 45S5 Bioglass ® particles as bioactive inclusions (Maquet et al., 2003, 2004; Verrier et al., 2004; Blacher et al., 2005).
Polymer-coated bioceramic scaffolds can be produced by a dipping method that involves the dipping of a bioceramic scaffold in a polymer solution followed by drying in air (Bretcanu et al., 2007); the polymer coating is useful to improve the mechanical properties of the scaffold, especially the fracture toughness (Rehorek et al., 2018).
A dip-coating approach has been also reported to apply a biomimetic calcium phosphate layer on metal scaffolds (TiNbZr alloy) to improve their biocompatibility (Wang et al., 2009).
A highly versatile and promising approach to produce bioceramic scaffolds coated with different materials (polymers, other ceramic phases) is the electrophoretic deposition (EPD), which uses the electrophoresis mechanism for the movement of charged particles suspended in a solution under an electric field, in order to deposit them in an ordered manner on a substrate to develop thin and thick films and coatings (Boccaccini et al., 2018). Fiorilli et al. (2018) reported the successful EPD of MBG onto a strong, nearly inert glass‘ceramic scaffold to obtain a bioactive high-strength construct for load-bearing applications in bone tissue engineering. The use of EPD to produce carbon nanotube (CNT) coatings for smart applications in tissue engineering has been also investigated, for example, Meng et al. (2018) incorporated CNTs into 45S5 Bioglass ® - derived glass‘ceramic scaffolds by EPD and cultured mesenchymal stem cells on the constructs with and without electrical stimulation, and they observed that the electrical conductivity associated with the CNTs can promote the proliferation and differentiation of the cells attached onto the scaffold.
Clinical Applications of Bioceramic Scaffolds: Present and Future.
An overview of the applications of bioceramic scaffolds in medicine is summarized in Table Table3. 3 - As a result of biomechanical limitations, bioactive glasses, glass‘ceramics, and calcium phosphates are mainly used in low-/non-load-bearing applications or compressive load situations in solid or powder form, such as bone restoration and augmentation, middle ear repair, vertebral, and iliac crest replacements (Hench, 1998; Dorozhkin, 2018a). Thermal-sprayed HA coatings on metal joint prostheses are also used in the clinical practice by surgeons (Sun et al., 2001). Bioactive glass‘ceramic porous coatings on alumina acetabular cups have been recently proposed to improve osteointegration of prosthetic devices (Vitale-Brovarone et al., 2018b; Baino et al., 2018, 2018a).
All the applications of bioactive ceramics take the advantage of bioactivity and minimize mechanical-property requirements, which may be an issue in the case of highly porous implants. Stock porous blocks of various size made of HA, (biphasic) calcium phosphate, and a few bioactive glasses (Table (Table3) 3 ) are currently marketed worldwide and clinically implanted in humans for the repair of small bone defects; these implants can be contoured intraoperatively by the surgeon to match the size/shape of the defect. SFF-derived custom-made HA porous scaffolds are produced if a high accuracy on the size or complex shapes are needed, such as implants for orbital floor repair (Levy et al., 1997). Trabecular bone ‘ which can be actually considered a natural bioceramic-based composite ‘ from bone banks is also used as a restorative material (Schlickewei and Schlickewei, 2007).
A special non-osseous application where (porous) bioceramics are widely used is the fabrication of orbital implants for enucleated patients. Porous spherical implants (scaffolds) made of bovine, coralline, and synthetic HA as well as alumina are routinely implanted upon anophthalmic socket surgery as they are biocompatible and allow fibrovascularization within their pore network (Baino et al., 2018). Early human trials with 45S5 Bioglass ® /polyethylene composite porous orbital implants showed promising results, including an enhanced implant fibrovascularization compared to other available devices (Naik et al., 2007), which can be due to the angiogenic effect of bioactive glass.
In recent years, the use of bioceramic and composite scaffolds ‘ usually comprising bioactive glass as an inorganic phase ‘ has also been proposed for some emerging applications in contact with soft tissues. In this regard, the angiogenic potential of bioactive glasses has opened new perspectives in skin tissue engineering. Day et al. (2004) first showed in vitro (using fibroblasts) and in vivo (in rats) the ability of 45S5 Bioglass ® incorporated into PGA meshes to increase scaffold neovascularization, which would be highly beneficial during the engineering of larger soft tissue constructs. Nano-sized 45S5 Bioglass ® particles were also used by Rai et al. (2018) in the fabrication of a novel poly(3-hydroxyoctanoate)-based composite scaffold for wound dressing: the incorporation of bioactive glass nanoparticles accelerated blood clotting time and enhanced the wettability, surface roughness, and overall biocompatibility of the scaffold.
Hong et al. (2018) investigated the use of ultrathin MBG hollow fibers (diameter around 600 nm), fabricated by electrospinning combined with a phase-separation inducing agent [poly(ethylene oxide)], as a multifunctional system for skin tissue engineering (support to the regenerated tissue and release of anti-inflammatory drugs) when organized in the form of 3-D macroporous membranes. MBGs were also mixed with chitosan to produce composite films by freeze‘drying for possible use as hemostatic membranes for skin repair (Jia et al., 2018).
Bioactive glass scaffolds have been also proposed for lung tissue engineering applications. In a study by Tan et al. (2002), sol‘gel-derived bioactive glass foams with surface modifications to include amine or mercaptan groups and/or coated with laminin were manufactured and placed in culture with murine lung epithelial cells to determine the best conditions to promote cell growth and proliferation. Based on histological examination of the cell cultures, there was full colonization of the foams by the lung cells and it was shown that the laminin-coated, amine-modified foams were most effective in promoting cell growth and attachment.
In another study, Verrier et al. (2004) proposed the use of PDLLA/45S5 Bioglass ® porous composites for lung tissue engineering performing in vitro biocompatibility assays with a human lung carcinoma A549 cell line. Two hours after cell seeding, a general increase of cell adhesion according to the increased content of Bioglass ® (0, 5, and 40 wt.%) in the PDLLA foams was observed, but cell proliferation studies over a period of 4 weeks revealed a better aptitude of A549 cells to proliferate on scaffolds containing only 5 wt.% of glass. These results seem to indicate the possibility of using bioactive glasses in lung tissue engineering approaches, although a lot of future work, including testing with the different cell types found in this complex tissue, is necessary for further advancements.
The results reported by Verrier et al. (2004) demonstrate that the concentration of bioactive glass in tissue engineering polymer-based constructs should be always optimized depending on the considered tissues that we want to regenerate. This dose-dependent effect was also observed in another study by the same research group, in which PLGA/45S5 Bioglass ® composite tubular foam scaffolds (porosity about 93 vol.%, size of interconnected macropores in the 50‘300 μm range, wall thickness within 1.5‘3.0 mm) were fabricated via TIPS (Boccaccini et al., 2005); the authors proposed the use of the produced constructs for the regeneration of tissues requiring a tubular shape scaffold, such as blood vessels and trachea.
The research group led by Prof. Jonathan Knowles also carried out a few studies with phosphate glasses for applications in muscle regeneration. Ahmed et al. (2004) found that CaO‘Na 2 O‘Fe 2 O 3 ‘P 2 O 5 glass fibers allowed attachment, proliferation, and differentiation of conditionally immortal muscle precursor cell line with the formation of myotubes along the axis of the fibers. Shah et al. (2005) found that human masseter-derived cells seeded on a 3-D mesh construct not only attached and proliferated but also migrated along the fibers forming multinucleated myotubes. It was also found that 3-D aligned fiber scaffolds were able to support unidirectional cell alignment and caused an up-regulation of genes encoding for myogenic regulatory factors (Shah et al., 2018), even when the glass fibers were embedded into a collagen gel to form a composite scaffold (Shah et al., 2018). Glass fibers were also found to support and direct axonal regeneration both in vitro and in vivo (Vitale-Brovarone et al., 2018a; Kim et al., 2018).
Because of their ability to bond to soft tissues and to elicit desirable biological responses, such as angiogenesis, bioactive glasses have been recently proposed in a non-porous form for some other interesting non-osseous applications. A few examples concern the use of bioactive glass particulate for the treatment of gastric ulcers, injectable radioactive glasses for killing cancer cells in liver tumor, glass/polymer composites for cardiac tissue engineering, and glass/polymer tubes for peripheral nerve regeneration. These applications, not restricted to porous scaffolds, have been recently reviewed by some leading scientists in the field (Baino et al., 2018b; Miguez-Pacheco et al., 2018a, b).
Summary and Outlook.
Progress in tissue engineering has led to the development of porous materials designed and manufactured to act as a scaffold for the growth of new tissue in order to restore the natural state and function of diseased parts of the body. Bioceramics have demonstrated to be highly suitable materials for tissue engineering scaffolds and developments in processing methods have provided a mean to control the 3-D architecture of such scaffolds. In spite of remarkable advances, bioceramics have not yet reached their full potential but research is ongoing.
Besides “traditional” use for osseous defect repair, a variety of innovative applications are emerging; for instance, recent studies have interestingly highlighted the suitability of bioactive glasses and glass‘ceramics for wound healing applications and soft-tissue engineering (Baino et al., 2018b; Miguez-Pacheco et al., 2018a). For these applications, where softer and more flexible materials are needed, inorganic‘organic hybrids could be an even better solution. These materials are interpenetrating networks of inorganic and organic components that interact at a molecular level; they behave as a single phase and, thus, degrade as one material (overcoming the main drawback related to composite biomaterials). Their mechanical properties as well as bioactivity can be tailored by varying the constituents and synthesis/processing parameters (Jones, 2009, 2018).
The use of porous bioceramics as parts of a complex prosthetic devices and not only as a bone-filling material for the restoration of osseous defects but also as a “warm” challenge that has recently arisen. In this regard, a fascinating approach that has been put forward is the use of glass-derived scaffolds as osteointegrative trabecular coatings on ceramic acetabular cup of hip joint prosthesis. These coatings are expected to induce biological fixation of the prosthesis while eliminating the need for invasive screws, cements, or threading to fix implants in place (Vitale-Brovarone et al., 2018b; Baino and Vitale-Brovarone, 2018b; Baino et al., 2018, 2018a).
The development of multifunctional bioceramics that combine the “conventional” properties of 3-D porous bioactive scaffolds and the added value of therapeutic ion release also has great potential. In this regard, bioactive glasses can be doped with various trace elements to provide a smart strategy for the controlled delivery of ions in situ , such as Sr, Cu, Zn, Ga, or Co, which may lead to therapeutic effects upon their release into the cellular environment (e. g., promotion of angiogenesis, antibacterial action) (Hoppe et al., 2018; Mourino et al., 2018).
Fabrication of bioceramic components with hierarchical porosity has also recently attracted the interest of biomaterials scientists (Colombo et al., 2018). The use of MBGs either in the form of macro-/mesoporous scaffolds or as coatings can add valuable extra-functionalities to the (base) scaffold. The mesoporous texture and high surface area of these glasses intensify the rate of surface reactions, leading to a faster release of ionic species upon glass dissolution. Therefore, not only the classical bioactivity mechanism is speeded up (fast formation of a surface layer of HA that allows strong bone bonding in vivo ) but also therapeutic metal ions, previously incorporated within the glass network, can be quickly released upon contact with biological fluids (Wu and Chang, 2018). The solubility rate of MBGs can be tailored by controlling the textural parameters (e. g., mesopore structure and size) and by changing the glass composition so that they dissolve at controlled rates matching those of the tissue growth. A further added value is using MBGs as carriers for the controlled delivery of drug molecules that can be incorporated in the material mesopores (Arcos and Vallet-Regí, 2018), thereby creating a multifunctional tissue engineering implantable device.
New strategies for scaffold fabrication are also emerging both to improve the scaffold performance and to develop ever more sustainable processing routes. For instance, highly porous bioactive glass scaffolds were successfully produced by an innovative method based on preceramic polymers containing micro - and nano-sized fillers (Fiocco et al., 2018). Silica from the decomposition of the silicone resins reacted with the oxides deriving from the fillers, yielding glass‘ceramic components after heating at 1000°C. Despite the limited mechanical strength, the obtained samples possessed suitable porous architecture and promising biocompatibility and bioactivity, as testified by preliminary in vitro tests. This method has also been very recently applied to fabricate wollastonite/diopside composite foams for bone tissue engineering applications (Fiocco et al., 2018).
If an oriented pore microstructure and high mechanical properties are required, freezing of ceramic slurries can represent a valuable, relatively simple strategy to this aim (Liu et al., 2018).
In summary, new, continuous advances in scaffold processing technologies and novel emerging applications of porous scaffolds in both hard - and soft-tissue engineering bring further honor to the long history of ceramics in medicine. We forecast a bright future for bioceramics, which will indeed provide an ever increasing contribution in improving the quality of life of mankind.
Author Contributions.
FB conceived the study, performed literature search and wrote the paper. GN performed literature search and wrote the paper. CV-B wrote the paper. All authors critically revised the manuscript.
Conflict of Interest Statement.
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
The research leading to these results has received funding from the EU Seventh Framework Programme (FP7/2007-2018) under grant agreements no. 286548 (MATCh), no. 280575 (Restoration) and no. 264526 (GlaCERCo).
Content Strategy for.
Who is this guide for?
We’ve written this for all the people that want to make smarter, content-led decisions on their web projects. If you’re an agency working with clients on their website redesign projects, or part of an in-house team working on your own redesign, this guide is for you.
It’s for the UX and visual designers, content strategists, the business development and sales people, account managers, copywriters, project managers, and developers that all play their part in a successful web project.
Why bother going content-first on projects?
If websites are primarily a vehicle for content delivery, why do so many web projects still disproportionately focus on visual design and functionality, at the expense of the content?
When we treat content as an afterthought we limit our ability to make good design decisions and our sites fail to achieve their goals.
It is a constant challenge we’ve been wrestling with for years, as we try to push content to the heart of the design process and the users’ experience.
This guide shares some of that experience and the practical techniques to help you emphasise content at each stage of a typical website project.
We hope it will inspire you to start thinking content-first for better results.
What we don’t mean by ‘content-first’
To be clear, we’re not saying: wait until your client or your team has finished writing all their website content first before you start designing and building. That approach doesn’t work and just creates a different set of problems.
We believe that considering and thinking about content at each stage of a project steers us to appropriate design decisions, which delivers better websites.
“There is a symbiotic relationship between content and design. One cannot thrive without the other.”
جدول المحتويات.
Chapter One.
The business case for a content-first process.
What are the benefits for a content-first approach.
Chapter Two.
Project sales process.
Start to win more work or get stakeholders on board easily, by selling in your content-first approach.
Chapter Three.
Engagement phase.
Advice and techniques to kick-off your web projects with the right mindset.
Chapter Four.
Discovery phase.
Introduce smart techniques for immediate insights that will benefit the entire project (and beyond).
Chapter Five.
Design and build phase.
Pick up our proven methods for designing with real and proto-content to make smarter design decisions.
Chapter Six.
Post launch.
Learn how to sustain website content from “Day 1” onwards.
Want to read later?
“In the era of this-first and that-first thinking, I think we’ve always been leaning toward a content-first approach, even if we didn’t use that term. Content first isn’t copy first, any more than a “development-first” approach would imply the team immediately starts by coding. Rather, when we all approach a problem by first considering the content, we set ourselves up to wrestle with its purpose and communication goals. Does the new website need to convey a value proposition and empowered thought leadership? Then let it promote the biographies and podcasts of individual staff members. Does the magazine need to communicate our depth of research and commitment to unbiased science? Then let it form around articles that describe experiments and extensive trial and error. In either case, as writers, designers, and marketers, we come together around the content, first, to then plan our tactics. Our goals and their form drive the details and execution, as it should be.”
Chapter One.
The business case for a content-first process.
“If we can take the time to discover the possibilities and challenges of a project, then get stakeholders to agree and align on how the content can be leveraged as a real business asset, it’s never time wasted. I’ve only seen it saving time. Crucial conversations build a knowledge base and efficiencies for design and development resources.
Margot Bloomstein liked to say “Paper’s cheap. Photoshop is really expensive.” Conversely, your client needs a plan that they can either budget for the content or scale their organization to execute on the best intentions of the design. They’ll thank you for it later, and that’s priceless.”
Bad things happen when content isn’t put first.
Have these common issues impacted the projects you work on?
Has late content delayed the launch of a website? Have you over-designed sites that then became unsustainable after launch? Be honest. Have your carefully designed templates struggled once final content has been added? Was it too late to change things? Have you relied on designing templates with Lorem Ipsum because you didn’t have real content to work with? Have last minute requirements caught everyone out? Have you wasted hours piecing together content from various sources to upload to the CMS?
“It’s always challenging for our clients to risk an approach that might run counter to “how we’ve always done it” on the web or in a particular medium. But this isn’t just a case that new problems need new solutions. Rather, the content-first mindset is nothing new and should feel very familiar from other activities and industries. No respected architect would plan out rooms without first considering the activities that will occur in those rooms. No caterer would lay out a buffet with serving platers without first planning the content of those dishes to determine the best style, form, and size for the job. In other disciplines, we consider content before format. That thinking makes sense in our industry as well.”
In the past, so much of devising a content strategy was subjective. “This is better, that’s not as good”, etc. But employ some analytics in your content audit and you can drive your suggestions and ideas home with real numbers from a client’s real customer. If you come up against a brick wall when you suggest removing a page, showing clients the actual numbers can backup your suggestion and make your ideas a reality.
What’s the ‘BIG’ problem?
We design and build websites with a controlled set of page templates for scalable and consistent sites they can quickly be added to. من المنطقي.
But we’ve fallen into a bad habit of designing and building the template layouts first, and only then populating them with real content. Usually when time and budgets are already too exhausted to iterate and improve them.
If you take the time to understand your content’s goals, target audience, format, source, structure, volume, frequency, quality, ownership .
. you will make smarter strategic, functional, user experience, visual design, and business decisions.
Example scenario: Balmain University’s international student website.
We’ll use this fictional website redesign project throughout the guide for additional context, focusing on our pretend university’s international student website.
It’s been decided that a dedicated Latest News section on the new homepage is a must (the boss wants it, whether that’s your client or your Director).
Rather than simply complying, you take five minutes to count the news items published on the current site over the year. There are only six published news items - hardly latest news.
So then you ask: “Why do you expect to be able to produce more news items on the new site? Will there be more staff resources to maintain it?”
An increased frequency of news can’t be guaranteed, so you propose a flexible module on the homepage template that can feature different types of content including latest news items (if and when available).
With a little retrospection and common sense you have avoided unwitingly providing a poor(er) experience to the users, and damaging the project goals by failing to sustain content.
Make the case for putting content first.
These points will help you to explain the benefits and convince your agency, colleagues and bosses:
Reduce project rollout delays caused by underestimating the content production challenge (by thinking about content in good time) Don’t waste time and budget designing and building functionality and templates that fail to handle real content Make smarter, content focused design decisions for a better user experience Delivering great and sustainable sites actually increases longer term success, builds trust, and wins repeat business (if applicable). Folk are increasingly aware and expecting greater emphasis on content during a web project (it’s no longer just about a new look and feel!)
How to validate your content ideas.
Ideas can be cheap in a web project, but expensive to deliver. Get into the habit of asking these questions throughout your projects to challenge ideas:
Does this content idea directly support a user need and/or business goal?
Which user need or business need? Is this a priority? Is it the most effective way to support it?
Do the insights from the current site validate this content idea?
Could you/the client sustain this content on the original site? How much time has been previously dedicated? Did the content meet user needs? What is the evidence?
Have we validated this idea with real or proto-content?
Are we making our decisions on something more insightful than Lorem Ipsum? What do we learn from using the real thing or approximate proto-content?
Realistically, can the content idea be sustained long term?
Is it a sufficient priority? Is there already too much content? Do the team have the skills, especially for videos and animations? Will the 17 content producers still be around after launch to do it? Is there a budget for maintenance?
Is someone going to own this content beyond launch? من الذى؟
Is there an ongoing subject matter expert (SME)? Have they been part of the process so far? Is the SME willing to be responsible for it? Has their name been captured in the site map doc for easy reference? Who has overall responsibility for the site’s content?
Does this content idea introduce unnecessary responsibilities or risk?
Will this go out of date quickly? Are there any legal considerations? Is it difficult to maintain this content? Is it expensive to update this content (videos and animations for instance)?
“The worst content idea we ever received in the middle of a project was this: start from scratch.
Yes, there are things to throw away, and probably most of it. However, there are core pieces of content, or at least one atom of an idea, everyone knows to be true, useful and desired. We can edit from the bare essence. Starting from a blank page is just death, as any creative can atest.
Get back to The Big Idea. What are the audience insights? What’s going on in the landscape? What are they really good at? What does this even mater? Start there, and you can find, revise or build as much content as needed. Declaring content bankruptcy never gets you out of messaging debt.”
Chapter Two.
Project sales process.
It’s time to sell in your content-first approach. Some clients or teams will expect nothing less and you’ve got an easy sell, but others may take some convincing.
Spot those that will value a content-first approach.
Look out for these tell-tale signs during early conversations and project documents:
Content has already been identified as an issue on the existing site Key content people are part of the initial project team and procurement process They will have already detailed content specific objectives for the new site They have a content heavy site that may have sprawled out of control Their site has multiple sources of content They have been burnt by content in previous web projects.
People making these noises will be highly receptive to this approach.
But nobody seems interested.
Not all people will care about their content as much as you would like. Probably best to focus on the cold, hard business case that will resonate:
The new site will cost less because we only design and build the templates you actually need for your content You get your new site quicker because we can get the designs right faster when we have real content to work with Your team won’t be demoralised by struggling to produce all of the site’s content in a big rush at the end of the project - you can spread the effort over a longer period Go live on time - working on the content early greatly reduces the risk of a delayed site launch and the implications of missing the target Prioritising content that delivers your business goals and user needs means you don’t waste time and money on unnecessary content Get a site you can realistically sustain so you don’t risk reputation damage with outdated and irrelevant content.
“Selling content strategy to clients who are working with tight deadlines and ever decreasing budgets is one of the toughest but most rewarding parts of the job. This is the time when you’ve got to lay it out in front of them. Highlight the benefits to their bottom line, the increased efficiency of their content workflow, the more engaged workforce, and the ability to put out better quality content for their customers, and you’ll have them in full agreement.”
Emphasise your content-first pedigree.
Try to make these points during your early engagements:
Respect the effort and commitment to produce and sustain good content Audit current content to discover insights that will help us to design a site that better meets business goals and user needs Design templates around real or proto-content, rather than waiting until the end to see how well they handle real content Only design sites with ongoing content demands that can be sustained beyond launch with available resources and skills Offer guidance through the demanding content production stages to greatly reduce the risk of late content delaying the launch Ask you to start producing content earlier in the project to give you more time.
Of course, the more case studies and client testimonials you have to back up your claims, the better!
Chapter Three.
Engagement phase.
Most web projects have a short phase of engagement before the real project work begins. It is a time for the key project people to all meet and agree how things are going to run. It’s also the perfect time to start talking about content.
Kick-off: Content question checklist.
These simple, direct questions at the start of your next web project will force you and your team to think content-first.
You can add these into a regular kick-off meeting agenda or handle as a separate call. It should only take 30 mins. It won’t catch everything, but it is a good start.
Note: some questions are only relevant to redesign projects.
Do you know how much content you have on your current site?
Yes: Good start. You’re already thinking about content and probably considering its impact on the project.
No: You need to answer that ASAP. This is a good opportunity to suggest a content audit.
Have you (or will you) audit the content on your current site?
Yes: Excellent. There is an understanding of the value of auditing content and the whole project will benefit from the insights. Get your hands on it.
No: Insist on performing an audit, even if it is just a sample audit. More about audits later.
Are you archiving old and poor quality content on your current site?
Yes: Great. The team respects content as a finite resource that has a life-cycle.
No: Warning. They may be assuming poor, old content will be migrated across to the new site.
Do you know who is going to (re)write all the content for the new site?
Yes: Good. Don’t assume that improved content will magically appear in the new site. Ask who and assess their skill level and availability.
No: Failing to respect a significant project work stream and assuming the content can be easily migrated from the old site to the new is a big risk . Set expectations now and discuss the advantages of hiring a dedicated copywriter.
Does someone have overall responsibility for content quality during the project and beyond?
Yes: Good. There is someone with a lot riding on the new site and will be (in theory) working hard to produce good content. Start building a strong working relationship with them ASAP.
No: Alarm bells. If such a person does not exist and is not considered necessary, then the content beyond launch will be rudderless.
Download the 13 content questions checklist for your next website project.
Do you know (roughly) how many hours per week will be dedicated to maintaining content on the new site?
Yes: Good. See the launch of the new site as the beginning and be more open to prioritising content that can be sustained.
No: Don’t be short-sighted and unable to sustain the site. Discuss who could be responsible and how that could be funded.
Does the current site’s content have dedicated (subject matter expert) owners?
Yes: Good. Those SMEs will need to be engaged during the project.
No: The SMEs may not value the site’s content and will need to be (re) engaged to take ownership. This can take time and should not be left until you actually need to consult them.
Do you know if any content is syndicated from other systems?
Yes: Good. You need to know the content eco-system. Investigate that syndicated content ASAP so it doesn’t catch you out.
No: Warning sign. Conduct a content ecosystem audit before you get caught out by a nasty, legacy content feed. More about mapping ecosystems later.
Will you have a (digital) content style guide?
Yes: Good. Content quality and consistency will be better.
No: Encourage the commission of a content style guide ASAP to help ensure consistent, quality content.
Meet the key content people.
It’s time to build a strong working relationship with the key content people. Include content people in the kick-off meeting so you get to meet them early on. That may be a senior editor or a lead writer.
Chapter Four.
Discovery phase.
Whether you call it a research, immersion or a discovery phase, there are many potential activities you can include to help to put content-first in your projects.
Content audits.
If you’re redesigning a client’s existing site then it is always worth taking time to audit the current content. It may be a bit dull, but by the end you and the team will have an accurate, insightful content inventory that will hugely benefit the rest of the project:
What content types currently exist (and are likely to continue existing)? Where is content feeding in from (e. g. social network platforms, RSS feeds, APIs, other CMSs) Is some content out of your control and are there constraints around its accuracy, format, availability? How much content will the new navigation need to handle? Has the existing team been able to maintain what they already have? What content is or has been popular / unpopular?
You’ll be surprised at what’s hiding away!
“Get this wrong and it’s going to make the rest of the project a nightmare. But get this right and it’s the foundations for everything you do going forward. It’s not an exciting or sexy job, and it can be very, very, time consuming, but once you know your client’s content better than they do, that’s the moment your content strategy can really go places.”
A few things to remember.
The time and effort you can spend on an audit depends on budget and timeframes, and it may not be possible to conduct a full and comprehensive audit.
Smaller sites (fewer than 400 pages) - full audit of all pages and assets Larger site (more than 400 pages) - audit a sample of pages and assets from each section at all levels.
Estimate size with the sitemap Look for a sitemap page (usually linked in the site’s footer) to quickly assess the number of pages, but remember some sitemaps only show pages to a certain depth and hide the real scale. You can use a site crawl tool to uncover those hidden pages and get a true understanding of the site’s size. Assign an auditor who will be involved throughout The temptation is to outsource this tedious task, but the valuable insight it generates should be kept within the project team if possible.
Download our worksheet: How to Perform a Content Audit.
How to perform an audit.
1. Download your content inventory template.
Make a copy or download our content inventory Google Doc sheet and amend it to meet your needs.
2. Capture the skeleton of the site.
Build your inventory up in layers and start by capturing the structure of your pages:
Start at the homepage (Level Zero) Capture the Level One sections such as ‘About us’, ‘Our services’, ‘Help and support’- leave spare rows between them to populate later.
Don’t forget the pages that sit under the homepage that don’t belong to a channel of the site, e. g. privacy policy, sitemap, accessibility statement, contact us.
3. Perform a detailed audit of each page.
Click your way through a section’s navigation page-by-page, to populate the inventory with minimum detail:
Title - filename of the asset, e. g. helen-taylor-ceo. jpg URL - just the parts after your site’s domain, e. g. /staff-profile/ helen-taylor. html.
Tip: assign a unique Ref ID number to each page for handy future reference.
Depending on the scale of the site and your available time, capture a combination of these quantitative and qualitative details to get more insights from the exercise:
Content type - article page, event, staff profile, product page, media release, FAQ. Files and media - PDFs, images, video. Functionality and forms - signup form, calculator widget, shopping cart. Owner of the page - if known Source of content - CMS, event booking system, stock management system… Sessions - refer to your analytics for the last 12 months.
Key messages - what is the page trying to convey? Are they doing it well? Accuracy - is it up to date, on message, factually correct? (you may need subject experts to answer this) Quality - does it follow writing for the web best practice, apply the voice and style guide, use user-centric language? Red flag - does the content need immediate attention because it is critically poor and damaging their reputation?
It can be difficult to evaluate accuracy and quality on sites with lots of pages. Fortunately, at this point you are looking for bigger patterns. If a page is clearly talking about something that is out of date, flag it. If it is terribly written, flag it.
Some auditors also assess how easy it is to find a page, when it was last updated, who its target audience is, and which business goals it is supporting. The point is: ask the questions that will give you the insights you need.
On a larger site you may find sections with recurring content such as old events, staff profile pages or news articles. Save time and record the number of items and sample audit a few to spot patterns.
4. Analyse and share the audit insights.
Ask these sorts of questions to inform the rest of the project:
How much content is there? More or less than expected? Did any “gotchas” emerge? Did you (re)discover content types and functionality that need to be preserved? What state of accuracy and quality is the content generally in (to migrate to the new site)? Does it all need heavily rewriting? Is the content coming from the sources you expected? What content did the current site struggle to sustain? What content was most popular / unpopular with users?
The audit may be conducted by one or two people, but it must be shared and discussed with the wider project team to ensure its hard won lessons make everyone think content - first.
Map the content ecosystem.
Audits are great for understanding a site, but a website’s content rarely exists in isolation, which means you need to understand and design for the wider content context.
During a discovery phase it is worth taking a few hours to work with the key content people to begin to answer these questions:
What are the main sources of content (on and off platform) that relate to the site? What content does the site currently syndicate from other sources? Is there any related and valuable, non-digital content (we could reuse or repurpose)? Who is responsible for each source of content?
All you need to get mapping is a big sheet of paper, a pack of post its and a few pens.
“You can put forward all the suggestions you want, but for clients to really see the benefits and feel comfortable that they can still find their content in its new guise, content mapping is an essential task. At Delete we use a combination of links to wireframes, InVision designs and content audit spreadsheets to make sure clients know where their content has gone (if it hasn’t been chopped or removed, that is).”
No horribly complicated system diagram required.
أبقيها بسيطة. Clearly capture the main sources and note if someone has direct control over the content or not. Annotate any interesting content types (if not obvious).
The activity is as important as the output because you are collectively exploring insights into the site’s wider content context.
In our simplified University International Office example, we immediately start to see content opportunities with their annual prospectus (print and PDF).
A quick review of the prospectus confirms it is already full of unique, valuable and high-quality content (inc. photos).
Can the site reuse or repurpose any of the content from the current and future prospectuses?
A content-first competitor analysis.
There are content insights waiting to be learnt from previous redesign attempts by competitors too:
What language and labels do they use? Is there a patern across competitors? What are the primary communication messages (they have prioritised)? What content types and templates are they using? What content is unique to them and what is your equivalent? How much detail do they include? What content mediums are they using and how? Video, pictures, maps. What content are they translating? What tone of voice do they use? Does it reinforce their brand?
Review direct and indirect competitors and capture your insights and analysis to share and discuss with the wider project team.
Back to our international student university example.
You are thinking about including student testimonials on the new site. You take 10 minutes to learn how other university international office websites are approaching student testimonials:
What content do they focus on (university life, academic excellence, job opportunities. )? How many testimonials do they have? Which student groups do they feature? Are they written or spoken in the first person? How are they promoted around the site?
You come away with a bunch of insights about what does and doesn’t work, ready to share with the project team.
“One of the most common KPIs for a project is for a new website to be ‘industry leading’, but without a look at how the rest of the industry is delivering content to their users, you’ll barely make a dent. Seek out the competitors, highlight their strengths as well as their weaknesses, and you’ll find the gaps in the market to really set your client’s content above and beyond anything that’s been done before.”
“Every discipline tends to look at competitors through their own lens. What are the design patterns? What about usability? What’s the frameworks or performance? That’s a shiny cool feature! It’s not wrong. In fact, it’s good to get the team thinking about how they would solve content challenges for a competitor. Knowing that makes it easier to focus on the content, but with an eye towards informing UX, design and development on the opportunities for your project.
If your personas and user journeys are handy, go through them to see what your audience needs along the way, and spot the gaps. Can it be discovered? Is it in the right format? Is it consistent? For the audience you’re reaching, is the content just plain missing? These are all of the foundations of a good competitive analysis.
My favorite insight was from one competitive analysis that showed how similar the content was between everyone, and it was treated the same way as well. There was a lot of industry “me too” speak — serving nobody. That insight fired up the client and team to address the “sea of sameness” problem head-on.”
Personas are a staple tool of user-centred design and a great way to uncover the users’ content needs.
Whichever way you like to create personas, try to include these content specific questions for some juicy insights:
What specific content does each persona need (to solve their problem)? What format do they prefer / expect / need? Where and how do they currently access that content (if even possible)? Why do they come to your client’s site for it? Could they go elsewhere? How much detail do they expect / need?
Tip: best to validate your personas with user surveys and interviews that probe the same questions.
A review of the personas will then start to tell you:
What content is most valuable and to which audiences (great for prioritisation) What format and presentation styles to consider, e. g. videos rather than text What angle or unique selling point does the content have over competitors What content do users need at different points in their journey.
If you don’t know how to create personas, we recommend using proto-personas championed by the Lean UX community.
Proto-personas rapidly get to the heart of the users’ problems and needs. They are intentionally rough and not meant to be an end result, but an activity that ushers the users to the centre of the design process.
“Audience segmentation and a thorough understanding of where the audience lives online is critical when it comes to devising a content strategy that works. If you know who your customers are, where they congregate online and what content they want to see at certain parts of the sales channel, you’ll create content that actually serves a purpose and supports the needs of the end user.”
“Have you ever been on projects where personas were the can kicked down the road? “We already have user profiles, or we’re working on audience segments. Those were in the brief.” Those are points of data and just points of data. What we really want is an artifact that expresses the empathy we can have with the audience we know, based on the data we have — something we can point to, challenge, understand and finally design to.
How can we ever build something our audience finds worthwhile if we don’t even know what they want?”
Chapter Five.
Design and build phase.
There are several activities that will ensure you continue to put content-first in your website projects during this busy phase.
The design or the content: what comes first?
Is it the container or the stuff you want to put in the container? Tricky.
Simply asking a team to produce all of the content they want in their new site before working on the the web page template (containers) isn’t smart. It is unlikely they will produce good quality content without the healthy constraints and parameters of defined content types and templates.
Alternatively, waiting until all the page templates have been designed and implemented before asking them to produce and upload their content into the site’s CMS is flawed (for all the arguments we’ve made).
For the best results designers need to have a solid (if incomplete) understanding of the content and structure, and the content people need to know what constraints they are producing the content within. That means design, functionality and content are developed simultaneously.
Throughout this phase, content will need to be edited and template designs and structures will be adjusted to find that sweet spot. This is a healthy and mature way to run a web project.
Download the free short PDF, 'The roles you need for a successful content team'
Design with proto-content.
Stuffing Lorem Ipsum into wireframes and prototypes is not a content-first approach. It is the opposite because it is inert, meaningless, lacks context and structure, revealing very little about the relationship between the design and the content.
In the absence of signed off content, there is still a better way: proto-content.
We don’t need perfect content to design and validate our imperfect prototypes, but we do need something better than gibberish.
Fortunately, there are several realistic options for UX and visual designers to make smarter design decisions early:
Back to our University example.
You are working on the UX design for upcoming international student events which will be promoted on the homepage.
Nothing too special on first inspection: each event will have a title, a summary extract, time details, location details, etc.
But you take five minutes to write some realistic proto-content for your wireframes for the upcoming event panels on the new homepage:
Example 1 (left) – no real content, placeholder Lorem text.
Example 2 (middle) – real content, typical case.
Example 3 (right) – real content, edge case.
The proto-content (examples 2&3) immediately reveals important insights that you don’t get from the Lorem Ipsum example:
Showing the building and campus name is long – perhaps just show the campus and reveal the building on the actual event profile page? How to best handle multi-day events? Could get tricky! Promo panels need to handle reasonably long titles of 7+ words – does that mean having less homepage panels, but with more space? The extracts of 30.
words might be overkill for a promo panel, is the title enough? What is the best date and time format to use? Do you feature upcoming events on the homepage that have already started but haven’t ended?
Because you have caught these insights early you can immediately iterate on your design, rather than realising when it is too late to easily change the built template.
Design with the current site content.
Even if it is outdated, it is still more meaningful than Lorem Ipsum. Get copying and pasting existing content into your emerging wireframes.
You can always update it with new content as it appears during the project.
Design with competitor content.
Copy and paste relevant, quick-win, proto-content from comparable sites. You will reflect on how they have designed for similar scenarios.
Write your own throw-away content.
It obviously takes longer to write a few paragraphs of content than dump and prune a block of Lorem Ipsum, but the insights and validation far outweigh the effort.
Use draft content (don’t wait for sign off)
Get copying and pasting new sample content into your prototypes as soon as the writers start drafting it. There is no need to wait for final, signed-off versions to start validating your design decisions.
Draft content is simply an early iteration of what will eventually be reviewed, revised and signed off as it works through the editorial workflow. It won’t be wildly different from the final version, so make use of it early.
Commission sample content.
If the writers are ready to go, ask them to draft sample content for the templates you are about to design. Give them some guidance and constraints about what you expect them to include by sharing any early template sketches and content models.
Using non-signed off content in your work has its risks. Teams can be forgiven for presuming you expect to launch with it when they are asked to review designs.
And test content has a nasty habit of finding its way into the final site at launch which can be embarrassing at best. These tips will help:
Always be clear in presentations and review sessions that the content they are looking at is not the final, signed off version Clearly and consistently label any non-signed off content on a page to avoid any confusion Use a consistent prefix on page titles in the CMS to easily filter for them Have a plan for removing non-signed off content before launch - some teams use a fresh database once they are ready to populate the site with signed off content Contain and use non-signed off content sparingly to reduce the chance of it slipping through the net.
Content Production Planning.
Our previous guide has all the advice you need to produce quality content on time for a website project.
Chapter Six.
Post Launch.
Launching a new website is the start not the end - it is simply “Day 1”. Many websites deteriorate from this point because there is no plan for life beyond the project, and content is usually the first thing to let users down. Talk about governance early in the project so everyone knows the long-term plan.
Content governance planning.
To ensure the site gets better over time, design and implement a content governance plan. You should certainly know by this point who the content champions are (maybe it’s you!), and they will be critical to its execution.
A plan should be a short, working document that clearly answers these questions:
Who is responsible for the maintenance of the site’s content (at a page-by-page level)? What are the process and timelines for reviewing and revising content? What is the workflow for new content? What is the criteria and process for archiving content? Who is responsible for evaluating the content KPIs? What content is high risk? What content is likely to go out of date? What training and support is required for site contributors (to keep up quality)?
“Good governance isn’t just good policies and more knobs. It’s making sure there’s a better author experiences and purpose to the work.”
“Selecting a new CMS platform, designing a new author journey or producing a new content workflow can be a lot for clients to get their heads around, and without a comprehensive governance playbook, it simply won’t work. Let them in to this new way of thinking, a new way to work with refined tools and workflows with governance that educates and informs in equal measure.”
The KPIs for evaluating content performance should be included or linked from the plan for quick reference. A good content governance plan should:
Have a dedicated owner responsible for its implementation Be distributed and be easy to access by all content stakeholders Be reviewed and updated on a regular basis Be referenced in the job descriptions of content owners and stakeholders.
Content Strategy: Sustainable Content Governance Guide.
How to to take control of your content and manage it effectively post-launch.
Design for sustainable content.
The best way to maintain content is to take a content-first approach throughout the earlier stages. Reflecting on what content is realistic, feasible and sustainable for the team’s skills, resources and priorities will greatly reduce the ongoing content challenge.
شكرا للقراءة!
We hope you can take something away from this guide to apply to your own process.
Asking simple questions, at the right time, will ensure content is at the heart of the design process and the eventual user experience.
So, good luck closing and delivering plenty of content-first projects.
The Complete Guide: Content Strategy for Website Projects (8,000 words + packed w/ examples)
Producing content for your web projects shouldn't be this hard.
GatherContent helps you remove the chaos and streamline your content production process.
Download: Content Strategy for Website Projects Guide.
Need to talk to someone? Email support, or sales.
شركة.
Content Strategy:
A Guide for UX Designers.
Learn how to bridge the gap between Content Strategy and UX Design.
A Guide to Content Production Planning.
Learn how to run a workshop to determine a workflow with stakeholders.
Great, welcome aboard!
هذا هو! You’re signed up to our mailing list and can expect content strategy goodness in your inbox soon.
No comments:
Post a Comment